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1 Introduction

Existing literature on hypothesis testing for Instrumental Variable (IV) models focuses on either

fixed number of instruments asymptotics (e.g. Andrews, Moreira, and Stock (2006), Kleibergen

(2005)) or diverging instruments asymptotics (e.g. Angrist, Imbens, and Krueger (1999), Chao and

Swanson (2005), Andrews and Stock (2007), Chao, Swanson, Hausman, Newey, and Woutersen

(2012), Mikusheva and Sun (2022)). To fully understand the problem at hand, we first restrict

our attention to the Anderson-Rubin (AR) statistic. The reason for this restriction is as follows:

Andrews et al. (2006)[Lemma 1(d)] showed that Z ′Y is a sufficient statistic for the parameter of

interest β in the general Instrumental Variable IV framework (see (2.1)). They considered the

Anderson-Rubin (AR) statistic1, which is a bijective transformation of the sufficient statistic Z ′Y .

Since a statistic is a sufficient statistic if and only if their bijective transformation is itself a sufficient

statistic2, it follows that the AR-statistic is a sufficient statistic for the parameter of interest β. It

is therefore reasonable to simply restrict our attention to this particular statistic and draw out its

most salient features.

Going back to the problem, classical IV models assume that the number of instruments is fixed,

and with it, the two-staged-least-square (2SLS) estimation was proposed. However, Sawa (1969)

and Phillips and Hale (1977), among many others, have shown that the usual 2SLS estimation is

biased whenever the number of instruments (K) diverge to infinity. To overcome this, Angrist et al.

(1999) proposed running a first-stage regression n times, once for each observation, leaving out one

observation at a time, where n is the number of sample size. This is commonly referred to as

”Jackknifing” of a given statistic. In particular, Chao et al. (2012) derived the asymptotic property

of the Jackknifed-AR test under the case of K → ∞, showing that the estimator converges to a

standard normal distribution under some appropriate re-scaling. However, when K is moderate,

it is unclear which statistic the researcher should use. On one hand the researcher could use the

classical AR-test for fixed instrument (defined as ARclassical in section 5.1), which has size-control

for fixed instruments but has power-deficit when the number of instruments is large (See Lemma

B.5). On the other hand, the researcher could instead use the Jackknifed-AR test (defined as

ARstandard and ARcf in section 5.1), which provides good size-control whenever the number of

instruments is large, but has size-distortion when the number of instruments is small. A simple

1They denoted this statistic as S in equation (2.6) of their paper
2This follows straightforwardly from the Factorization Theorem, see for instance Lehmann and Romano

(2006)[Corollary 2.6.1]
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simulation illustrates this issue.3
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Figure 1: Power curve for K = 15
Note: The orange line with circle represents Qstandard; the green line with a cross represents
ARstandard; the black dotted line with downward-pointing triangle represents ARclassical. The first
horizontal dotted black line represents 5%; the second represents 10%; the third represents 15%.

Figure 1 demonstrates the case of moderate instruments, with the number of instruments being

15 and sample size equal 200. We propose two tests in the paper, one of which is Qstandard (see

section 5.1 for the description of this test). At the true parameter β = 0, ARstandard has a size-

distortion of 8%, while the sizes of Qstandard and ARclassical are 5.3% and 3.1% respectively. We

can see that the power of ARclassical is low throughout, while Qstandard has the added advantage

of mirroring ARstandard’s power while controlling for size.

Our proposed test takes into account this mismatch between fixed and diverging instrument

asymptotics, and provide a critical-value that converges in both cases to the correct asymptotic

limit distribution under the null, regardless of identification strength, so long as the number of

3The tests in Figure 1 are simulated based on the design of section 5.2, except we have reduced the sample size
to 200 (from 400), and defined U2 ∼ exp(0.2)− 5, v1 = diag(z11, z21, ..., zn1)(Beta(0.5, 0.5)− 0.5). We also increased
the concentration parameter C ≈ 140, which is about eight times higher than that specified in section 5.2. Using a
different (higher or lower) concentration parameter does not change the size, shape, power-ranking, and percentage
difference in power among the tests. We increased C to ”stretch-out” the power-curves in order to see this difference
clearer.
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controls grow slower than the fourth root of the number of instruments4. The critical-value defined

in (2.7) is related to Anatolyev and Solvsten (2023),5 and we extend their result to the problem of

weak instruments.

Structure of the paper: Section 2 makes precise the model setup and provides the testing pro-

cedure for our statistic under full-vector inference for both fixed and diverging instruments. It

further motivates and introduces the robust critical-value for our test statistic. Section 3 provides

a new strong approximation result for any ‘AR-type’ tests. Section 4 provides the asymptotic

size and power properties of our test. Specifically, this section demonstrates that our test consis-

tently differentiates the null from the alternative under strong identification, for both fixed and

diverging instruments. Furthermore, that our test have exact asymptotic size-control for both fixed

and diverging instruments is also shown. As an additional result, we derive in this section the

exact distribution of a generic Jackknifed-AR statistic under fixed K setting. Section 5.2 provides

simulation results for our power-curve based on calibrated data, which lends itself to our theory.

Section 5.3 provides an application of our theory to empirical data. Proofs of Theorems, Lemmas,

and Corollaries stated in the main text are shown in Appendix A, while Auxiliary Lemmas are

provided in Appendix B. In Appendix C we provide details on the two estimators satisfying (2.9).

In Appendix D we discuss general limit problems under fixed and diverging instruments.

Notation: We write [n] to mean {1, ..., n} and N := {1, 2, ...}. For any vector or matrix A,

||A||F :=
√
trace(A′A) is taken to be the Frobenius-norm. When there is no room for confusion,

we simply write it as ||A||. The spectral norm is denoted as ||A||S :=
√
λmax(A′A), where λmin(B)

and λmax(B) are defined as the minimum and maximum eigenvalue of a square matrix B. Note

that when A is symmetric, ||A||S ≡ λmax(A). For any real numbers a, b ∈ R, we write a ≤ Cb

to mean that a is less than or equal b times a constant C that is independent of sample size {n}.
For any index j, integer m and constant C > 0, we write χ2

m,j(C) to mean the jth chi-square

random variable with m-degrees-of-freedom and non-centrality parameter C. At times we do not

include the index j, and write simply as χ2
m(C) to mean a generic chi-square random variable with

m-degrees-of-freedom and non-centrality parameter C. We also write χ2
m,j to mean χ2

m,j(0), i.e.

centrality parameter equal zero. We write WPA1 to mean ‘with probability approaching one’. We

define ιi to be a vector of zeros, with the value 1 only on the ith element. For any set S, we write

Sc to mean the complement of the set. We use the symbol ‘⊗’ to denote Kronecker product. We

4Chao, Swanson, and Woutersen (2023) showed that when the dimension of controls are large, partialling these

controls out leads to inconsistent estimates under weak identification. They assumed

√
dW
n

= o(1), where dW is the
dimension of the controls, and showed that this condition is sufficient for consistent hypothesis testing. We have a
similar type of assumption here (see assumption 2)

5In particular, they showed that a weighted chi-bar distribution is able to mirror statistics of the AR-type (We
say that a statistic T is of an AR-type if we can express T = εAε for some deterministic symmetric matrix A and ε
is a random vector with zero mean and well-defined (or finite) covariance matrix)
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write ZK(J) to represent a standard Gaussian plus J ∈ RK , i.e. ZK(J) := N (J, IK). For any

statistic T with some given probability law, denote q1−α(T ) to be the (1 − α)-quantile of the law

of T .

2 Setup and Testing Procedure

2.1 Setup

Consider the model

Ỹ = X̃β +WΓ + ẽ

X̃ = Π̃ + ṽ (2.1)

where X̃ ∈ Rn×dX , W ∈ Rn×dW , dX is of some fixed finite dimension, Ỹ , ẽ ∈ Rn×1, Π̃i ≡
E(X̃i|Z̃i,Wi) ∈ R1×dX where Z̃ ∈ Rn×K is the matrix of instrument with full-rank. Also, β ∈ RdX

and Γ ∈ RdW×1. We observe (Ỹ , X̃,W, Z̃), and assume that W is a full-ranked exogenous control

matrix with dW ≤ n, implying that its projection matrix PW := W (W ′W )−1W ′ is well-defined.

Furthermore, the error terms ẽi are assumed to be independent across i. We assume throughout

this paper that dX = 1 in order to highlight the most salient features of our test, but we remark

here that it can be extended to higher dimensions (i.e. dX to be of dimension greater than one) so

that β can be multivariate.6

We are interested in testing

H0 : β = β0 versus H1 : β ̸= β0. (2.2)

To this end, we want to obtain a test that has size control under the null, irregardless of identification

strength. We allow the dimensions of the instruments and control, dZ and dW , to diverge to infinity

as n → ∞ (these dimensions can be fixed as well), with the added allowance that whenever they

do diverge, dZ can grow at the same rate as the sample size, while dW must grow at a slower rate

than the sample size.

To simplify matters, we first partial out the controls W and rewrite the model as

Y = Xβ + e

X = Π+ v (2.3)

where Y = MW Ỹ , X = MW X̃, Π = MW Π̃, e = MW ẽ, v = MW ṽ, Z = MW Z̃, MW = In −
6See Remark 1
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PW , where PW := W (W ′W )−1W ′. Throughout the text, we denote σ̃2i := Eẽ2i , ς̃
2
i := Eṽ2i , σ

2
i :=

Ee2i , ς
2
i := Ev2i , γ̃i := Cov(ẽi, ṽi) and P := Z(Z ′Z)−1Z ′. We define ei(β0) := Y −Xβ0 = e + ∆X,

where ∆ := β − β0. We define σ2i (β0) := σ̃2i + 2∆γ̃i +∆2ς̃2i and ς2i (β0) := ς̃2i + 2∆γ̃i +∆2σ̃2i . For

notational simplicity, we write e := (e1, ..., en)
′ instead e(β0) whenever β = β0. Furthermore, define

U := Z(Z ′Z)−1/2 ∈ Rn×K and Qa,b :=
∑

i∈[n]

∑
j ̸=i Pijaibj√
K

for any two vectors a, b ∈ Rn, where Pij is

the (i, j)-th element of P. We make the following assumptions thought-out the rest of the paper.

Assumption 1. Suppose that the errors (ẽi, ṽi) are mean zero and independent over i.

Assumption 2 (Moment conditions). Suppose pn
K = o(1) and pn ≤ δ < 1, where pn := maxi Pii.

Furthermore, assume pWn := maxi P
W
ii = o(1), and dW = O(K(1−η)/4) for any η > 0. Let the errors

and |Πi| be bounded in the eighth moment and bounded away from zero in the second moment,

i.e. maxi(Π
8
i + Eẽ8i + Eṽ8i ) < C < ∞ and (Π′Π)2, σ2i (β0), ς

2
i (β0) ≥ C > 0. Furthermore, suppose

C ≤ λmin(W
′W/n) ≤ λmax(W

′W/n) ≤ C and that Z has full rank.

For a balanced instrument design without controls, pn = K
n . Hence, for both fixed and diverging

K, pn
K = 1

n = o(1). Note that pn > 0 by the full rank assumption of Z, since
∑

i∈[n] Pii = K.

Furthermore, pn ≤ 1 since each element on the diagonal of a projection matrix is always bounded

by one. We allow the number of controls to diverge to infinity. However, in order for pWn to shrink

to zero in assumption 2, the increase in dimension of the control dW must be slower than n (i.e.

dW = o(n)), since by definition, pWn ≥ dW
n . In fact, we require a weaker assumption, that is,

dW = O(K(1−η)/4) for any arbitrarily small η > 0. This assumption ensures that we can strongly

approximate our statistic.7 In the case of fixed K,

pnd
2
W

K1/2
=

p
1/2
n

K1/2
(p1/2n ·O(1) ·K−(1−η)/2) =

p
1/2
n

K1/2
O(1) = o(1)O(1) = o(1)

Under diverging K,

pnd
2
W

K1/2
≤

d2W
K1/2

= O(1) ·K−(1−η)/2K1/2 = o(1)

2.2 Some Background and Motivation

In this section we briefly discuss the general difficulties of constructing a test that has simulta-

neous size-control for both fixed and diverging instruments. Consider first the classical case of

homoskedastic variance and fixed instruments. For simplicity, we assume for the moment that

control matrices are not present in the model of (2.1). Under the null, a consistent estimator of

the variance σ2 can be given by σ̂2 := 1
n

∑
i∈[n] e

2
i . Then under the usual regularity assumptions,

7See Theorem 1 and the discussion after.
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by continuous mapping theorem the estimator

e′Pe

Kσ̂2
=

1

Kσ2 + op(1)
(n−1/2Z ′e)′(n−1Z ′Z)−1(n−1/2Z ′e)⇝

1

K
χ2
K .

Consider now the case of diverging instruments. Note that by Chao et al. (2012)[Lemma A2],∑
i∈[n]

∑
j ̸=i Pijeiej√

2Kσ̂2
⇝ N (0, 1). Furthermore, WPA1 we have

∑
i∈[n] Piie

2
i

Kσ̂2 =
∑

i∈[n] Piiσ
2

Kσ2 =
∑

i∈[n] Pii

K = 1

(See Lemma B.1). Therefore we have

e′Pe

Kσ̂2
=

1√
K

∑
i∈[n]

∑
j ̸=i Pijeiej

√
Kσ̂2

+

∑
i∈[n] Piie

2
i

Kσ̂2
p→ 1.

Observe then that there are two distinct limiting distributions for the same (classical) statistic under

two different cases of instruments. In fact, for the diverging K case, e′Pe itself would diverge to

infinity, so that the denominatorK acts as a form of normalization. This normalization has the same

order as the diagonal elements. To see this, note that the diagonal elements
∑

i∈[n] Piie
2
i = O(K),

while the non-diagonal elements
∑

i∈[n]
∑

j ̸=i Pijeiej = O(
√
K), so that the order of the diagonal

terms dominate the non-diagonals. Note that the non-diagonals have a smaller order due to it being

centered. At this stage, we conclude that the statistic e′Pe
Kσ̂2 does not work simultaneously for both

cases of instruments, due to the diagonal elements. This highlights the importance of removing

the diagonals under diverging K. Therefore, in order to consider both cases of fixed and diverging

instruments simultaneously, a natural idea would be to focus on the Jackknifed statistic, where the

diagonals are removed, i.e. the statistic∑
i∈[n]

∑
j ̸=i Pijeiej

√
2Kσ̂2

,

which converges weakly to a
χ2
K−K√
2K

-distribution under fixed K. As K → ∞, we see that
χ2
K−K√
2K
⇝

N (0, 1). A researcher would therefore be inclined to use the following test under homoskedasticity:

Reject whenever ∑
i∈[n]

∑
j ̸=i Pijeiej

√
2Kσ̂2

> q1−α(
χ2
K −K√
2K

)

As a matter of fact, they would have exact asymptotic-size control in either case of fixed or di-

verging instruments. However, under general heteroskedasticity, we see that this matter is further

complicated because the variances of errors are generally of unknown form, so that consistent esti-

mation of these variances is impossible whenever instruments diverge. Nevertheless, as we explain

in the next section, even under diverging controls and heteroskedastic errors, our method provides

exact asymptotic size-control simultaneously for both fixed and diverging instruments.
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2.3 Test Statistic and Critical Value

Our test statistic is denoted as Q̂(β0) and defined as

Q̂(β0) :=
e(β0)

′Pe(β0)∑
i∈[n] Piie2i (β0)

(2.4)

Our test compares the test statistic Q̂(β0) with a robust critical value Cα(Φ̂1(β0)), where α ∈ (0, 1) is

the significance level and Φ̂1(β0) is a consistent estimator of Φ1(β0) =
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0)

under the null, with more details provided below. We will reject H0 : β = β0 at α significance level

if

Q̂(β0) > Cα(Φ̂1(β0)).

To see the exact formula of the critical value, we need to explain the limit distribution of our

test statistic Q̂(β0) under the null, in which case the ei(β0) has mean zero and variance σ2i (β0) for

β = β0. When K is fixed, under regularity conditions, we can show that

Q̂(β0)⇝ Z ′DnZ =
∑
k∈[K]

wn,iχ
2
1,k, (2.5)

where Z ∼ N (0, IK) and Dn := diag(w1,n, ..., wK,n) are the eigenvalues of

Ω(β0) :=
(Z ′Λ(β0)Z)

1/2(Z ′Z)−1(Z ′Λ(β0)Z)
1/2∑

i∈[n] Piiσ2i (β0)
, (2.6)

where Λ(β0) = diag(σ21(β0), · · · , σ2n(β0)), and {χ2
1,i}i∈[K] are K independent chi-squared random

variables with 1 degree of freedom. The denominator of Ω(β0) (i.e.,
∑

i∈[n] Piiσ
2
i (β0)) is chosen so

that trace(Ω(β0)) = 1. Also note that Ω(β0) is positive semi-definite, implying that its eigenvalues

(ω1, · · · , ωK) are nonnegative and sum up to 1.

Suppose Λ̂(β0) = diag(e21(β0), · · · , e2n(β0)). Then, when K is fixed, we can consistently estimate

the eigenvalues (w1,n, ..., wK,n) by the eigenvalues of

Ω̂(β0) :=
(Z ′Λ̂(β0)Z)

1/2(Z ′Z)−1(Z ′Λ̂(β0)Z)
1/2∑

i∈[n] Piie2i (β0)
,

which are denoted as w̃n = (w̃1,n, · · · , w̃K,n)
′. This motivates us to consider the 1 − α quantile

of weighted chi-squares random variable with weights w̃n (i.e., Fw̃n
=
∑

i∈[K] w̃i,nχ
2
1,i), which is

denoted as q1−α(Fw̃n
) and can be simulated given w̃. However, the eigenvalue estimators are not

consistent if K is diverging as fast as the sample size n. Fortunately, in this case, we can show that
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that

Φ−1/2(β0)

 1√
K

∑
i∈[n]

Piie
2
i (β0)

 (Q̂(β0)− 1)⇝ N (0, 1)

and ∑
k∈[K]

2w̃2
n,k

−1/2

(Fw̃ − 1)⇝ N (0, 1).

where Φ1(β0) =
2
K

∑
i∈[n]

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0).

Given a consistent estimator Φ̂1(β0) of Φ1(β0), we can adjust the critical value q1−α(Fw̃n
) as

Cα(Φ̂1(β0)) := 1 +

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

 q1−α(Fw̃n
)− 1√

2
∑

i∈[K] w̃
2
i,n

 . (2.7)

This adjustment guarantees the asymptotic size control of our test under diverging K case.

Lastly, we note that the critical value Cα(Φ̂1(β0)) can be rearranged as

q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1

 . (2.8)

When K is fixed, we are able to show that, under the null,

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1
p−→ 0,

implying that the adjustment of the critical value is asymptotically negligible. This guarantees the

asymptotic size control of our test under the fixed K case.

2.4 Estimator for Critical Value

We provide further details of Φ̂1(β0) discussed in the previous section. We assume that Φ̂1(β0) is

some estimator satisfying

Φ̂1(β0) = Φ(β0) +D(∆) + op(1 +
∑
i∈[4]

∆i) (2.9)

9



where

Φ(β0) :=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0)

and

D(∆) =

Op(1) if ∆ ̸= 0 is fixed

op(1) if ∆ = o(1)

We introduce two estimators that satisfy (2.9) – this is shown in Appendix C. The first estimator

is due to Crudu, Mellace, and Sándor (2021), which we denote as

Φ̂standard
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j (β0)

In this case, its accompanying function for D(∆) is given as8

Dstandard(∆) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(2∆

2Π2
jσ

2
i (β0) + ∆4Π2

iΠ
2
j ).

In order to decrease the size of the variance estimator under the alternative, we further consider

the cross-fit variance estimator due to Mikusheva and Sun (2022).

Φ̂cf
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [ei(β0)M

′
ie(β0)][ej(β0)M

′
je(β0)]

where M := In − Z(Z ′Z)−1Z ′ and P̃ 2
ij :=

P 2
ij

MiiMjj+M2
ij
, which is the second estimator satisfying

(2.9). Its corresponding asymptotic property as well as the expression of Dcf (∆) is provided in

Theorem C.0.2.9 To see why the cross-fit estimator works, under the alternative, we can express

ei(β0) = ei + ∆Πi + ∆vi. Consider the case where Π̃ ≡ Z̃θ0. Then Π = MW Π̃ = MW Z̃θ0, so

that MΠ = MMW Z̃θ0 = MZθ0 = 0 as Z = MW Z̃. Hence we can remove the effects of ∆ from

Πi. The bias of the standard variance estimator Φ̂standard
1 (β0) grows the at fourth power of ∆,

so that removing this component leads to higher power. Note that whenever the controls W are

dropped out of the model (2.1), the cross-fit estimator is exactly Mikusheva and Sun (2022)’s cross-

fit estimator and EΦ̂cf
1 (β0) = Φ1(β0) under the null. However, when there are exogenous controls

in the model, EΦ̂cf
1 (β0) ̸= Φ1(β0) due to the effects of partial-ling out the controls MW from the

error terms ẽ, which leads to dependence among the error terms ei in the reduced-form model

(2.3). The reason we are still able to obtain a consistent cross-fit estimator under the null lies in

8This is shown in Theorem C.0.1
9Note that the cross-fit estimator is more ‘costly’ than the standard estimator in the sense that the former requires

that maxi Pii ≤ δ < 1, while the latter does not have this requirement.
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the assumption that pWn := maxi P
W
ii = o(1).

3 Strong Approximation

This section is concerned with the conditions for which we can view the error terms (ẽi, ṽi) as being

normally distributed. This is important for understanding the limit distribution of (2.4) under

fixed instruments, as well as generic Jackknifed-AR tests under fixed instruments.

Consider a sequence of independent random variables {εi}i∈[n] such that εi ∼ N (0, σ̃2i ), so

that εi mirrors the first and second moment of ẽi. We assume that {εi}i∈[n] is independent of

{(ẽi, ṽn)}i∈[n]. We have the following result which tells us that under the null, whether our statistic

is Jackknifed or of the AR-type, we can always treat our errors as being normally distributed.

Theorem 1 (Strong approximation). Suppose assumption 1 holds and supi∈N E(ẽi)4 < ∞. Then

we have

1√
K

∑
i∈[n]

∑
j ̸=i

Pijeiej
d
=

1√
K

∑
i∈[n]

∑
j ̸=i

PijEiEj

+Op

[(p1/2n + p
3/2
n (pWn )1/2dW )

K1/2

]1/3
+
pnd

2
W

K1/2


where pn := maxi Pii and E :=MW ε. Furthermore,

1

K
e′Pe

d
=

1

K
E ′PE +Op

(
p
1/2
n

K1/2

)

The requirement for strong approximation is very weak, namely that pn
K = o(1) and

pnd2W
K1/2 = o(1).

In the simple case where dW is bounded, i.e. dW ≤ C for some C < ∞, we only require that
pn
K = o(1), since then

dW p
1/2
n

K1/4
≤ Cp1/4n

p
1/4
n

K1/4
≤ C

p
1/4
n

K1/4
= o(1)

In view of Theorem 1, we can view errors to be normally distributed under assumption 2. The

requirement for the eighth-moment of errors to be bounded is used only to control the size of our

test statistic under the diverging K case, specifically when K diverges at the same order as n (see

Theorem 2 and Lemma B.3, diverging K case).
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4 Asymptotic properties

4.1 Asymptotic size

We discuss the size properties of our test in this section, and provide details on why the Jackknifed

AR test will fail under fixed K asymptotics, not just under homoskedasticity (which was discussed

in section 2.2), but in the presence of heteroskedasticity. In fact, we establish necessary and

sufficient conditions for which general Jackknifed-AR can obtain exact asymptotic size under general

conditions. We have the following assumption.

Assumption 3. Suppose pn ≤ CK
n for some C <∞

Assumption 3 ensures that we have size control. Intuitively, it states that the largest value on the

diagonal of the projection matrix P is regular in the sense that the order of pn is equal to the fraction

of instruments over the number of observations, K
n . This follows from the fact that, by definition,

K
n ≤ pn. In the case of balanced instruments, we have that pn = K

n . Furthermore, note that this

assumption automatically implies the first part of Assumption 2, since then pn
K ≤ CK

n
1
K = C

n = o(1).

By the results of the previous sections, we can show uniform size-control of our test under any

identification strength, simultaneously for both fixed and diverging instruments. Let λn ∈ Λn be

the data generating process of n observations for (ẽ, ṽ, Z,W ). We impose the following restriction

on the sequence of classes of DGPs ({Λn}n≥1):

{ẽi, ṽi}i∈[n] are independent, Eẽi = Eṽi = 0,
pn
K = o(1), pWn = o(1), dW = O(K(1−η)/4) for any η > 0,

maxiΠ
2
i +maxi Eẽ8i +maxi Eṽ8i ≤ C <∞,

Π′Π, σ2i (β0), ζ
2
i (β0) ≥ C > 0 under the null,

C ≤ mineig(W
′W
n ) ≤ maxeig(W

′W
n ) ≤ C,

0 ≤ Pii ≤ δ < 1,

Φ̂1(β0) satisfies (2.9) under the null,

where 0 < C,C, δ <∞ are some fixed constants


(4.1)

Then our test has size-control uniformly over the set of DGPs that satisfy (4.1). We formalize the

statement as follows:

Theorem 2. Suppose {Λn}n≥1 satisfies (4.1) and assumption 3 holds. Then under the null, for

both fixed and diverging instruments, we have exact size control, i.e.

lim inf
n→∞

inf
λn∈Λn

Pλn

(
Q̂(β0) > Cα(Φ̂1(β0))

)
= lim sup

n→∞
sup

λn∈Λn

Pλn

(
Q̂(β0) > Cα(Φ̂1(β0))

)
= α

12



Remark 1. Note that Theorem 2 still holds when β is multivariate (instead of a scalar in (2.1)).

This is because under the null, the true error ẽ can be taken as known, with the remaining compu-

tation of our test depending only on the controls W and instrument Z, both of which are observed.

Therefore, repeating the proof under the null yields size control for any β ∈ RdX with fixed dX ≥ 1.

4.2 Asymptotic power

In this section we show that under strong identification, for both fixed and diverging instruments,

our test consistently differentiates the null from the alternative, where strong identification means

C := QΠ,Π → ∞. The concentration parameter C was introduced by Mikusheva and Sun (2022).10

To motivate this concentration parameter, note that under the linear IV setting where Πi = π′Zi, for

K → ∞ it was shown in Mikusheva and Sun (2022)[Theorem 1] that whenever π′Z′Zπ√
K

is bounded,

no test can consistently differentiate the null from the alternative. Furthermore, Chao et al. (2012)’s

consistent estimator was based on the assumption that π′Z′Zπ√
K

→ ∞.11 Taken together, one can

expect that the requirement of π′Z′Zπ√
K

→ ∞ in the linear IV setting is important to ensuring that

our test consistently differentiates the null from the alternative. In fact, this requirement is equal to

requiring that C → ∞, which explains why C should be the right measure of identification strength.
12

4.2.1 Diverging instruments

We want to evaluate the power of our test Q̂(β0) under permutations of different scenarios. In

particular, we consider three cases for some sequence dn → 0: (1) Strong identification and local

alternative, where dnC = C̃ and ∆ = ∆̃d
1/2
n for some fixed ∆̃, C̃ ∈ R; (2) Strong identification and

fixed alternative, where dnC = C̃ and ∆ = ∆̃; (3) Weak identification and fixed alternative, where

C = C̃ and ∆ = ∆̃.

Theorem 3. Suppose Assumption 1, 2, 3 and (D.1) holds and K → ∞. For any estimator Φ̂1(β0)

that satisfies (2.9), we have under strong identification and fixed alternative

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= 1

Theorem 3 shows that whenever identification strength diverges to infinity, our test consistently

differentiates the null from the alternative. Note that in general, for any fixed alternative ∆ not

10Section D provides more detail regarding the concentration parameter C
11See Assumption 2 of their paper

12To see this, note that we can express the concentration parameter as C = π′Z′Zπ√
K

−
∑

i∈[n] Pii(π
′Zi)

2

√
K

, so that by

assumption 2, (1− δ)π
′Z′Zπ√

K
≤ C ≤ π′Z′Zπ√

K
. We can then see that the order between π′Z′Zπ√

K
and C are the same.
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necessarily zero, for diverging K we have that13

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

⇝ N (0, 1)

Therefore, under weak identification with fixed alternatives, we have the following result:

Theorem 4. Suppose Assumption 1, 2, 3 and (D.1) holds. For K → ∞ and any estimator

Φ̂1(β0)
p→ Φ1(β0), we have under weak identification and fixed alternative that

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

where F (·) denotes the cumulative distribution function (CDF) of a standard normal distribution.

In particular, if we assume Π′MΠ ≤ Π′Π
K → 0, then Φ̂1(β0) can be taken as Φ̂ℓ

1(β0) for ℓ =

{standard, cf} given in section 2.4.

The assumption of Π′Π
K → 0 automatically ensures that Φ̂standard

1 (β0)
p→ Φ1(β0), while the

additional requirement of Π′MΠ ≤ Π′Π
K is made to ensure that Φ̂cf

1 (β0)
p→ Φ1(β0) as well. Next,

we have the asymptotic power for our test under strong-identification and local-alternative, which

is similar to the case of weak identification and fixed alternative.

Theorem 5. Suppose Assumption 1, 2, 3 and (D.1) holds. For K → ∞ and any estimator Φ̂1(β0)

that satisfies (2.9), under strong identification and local alternative we have

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃√

Φ1(β0)

)

4.2.2 Fixed instruments

We introduce a measure of identification strength for a fixed number of instruments, defined as

µ̃2n := ||µK,n||2F

where µK,n := n−1/2Z ′Π. For notational simplicity we drop the dependence on n and simply denote

µK,n by µK . Note that there is an intimate relationship between the concentration parameter

defined above for the fixed K case (i.e. µ̃2n) and the concentration parameter C defined for the

diverging K case discussed earlier: µ̃2n and C have the same order. To see this, note that under the

13See the proof of Theorem 3
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assumption that Z ′Z/n
p→ QZZ , a positive-definite matrix, we have that with WPA1,

µ̃2n ≤ λmax

(
Z ′Z

n

)
· µ′K

(
Z ′Z

n

)−1

µK = λmax(QZZ)Π
′PΠ ≤ λmax(QZZ)

λmin(QZZ)
µ̃2n

where we note that µ̃2n = µ′KµK . Since 0 < λmin(QZZ) ≤ λmax(QZZ) ≤ C, µ̃2n has the same

order as Π′PΠ; as K is fixed, µ̃2n has the same order as Π′PΠ√
K

. Furthermore, observe
∑

i∈[n] PiiΠ
2
i√

K
≤

maxiΠ
2
i

∑
i∈[n] Pii√

K
≤ C

√
K ≤ C under fixed instruments, so that Π′PΠ√

K
= C +

∑
i∈[n] PiiΠ

2
i√

K
has the

same order as C. Combining these facts yield the result that µ̃2n has the same order as C.

We say that there is strong identification whenever µ̃2n → ∞. Otherwise we say that there is

weak identification. To be precise we consider three cases for some sequence dn → 0: (1) Strong

identification and local alternative, where ∆ = ∆̃dn for some fixed ∆̃ and µ̃2n = µ̃2/d2n for some

positive and finite constant µ̃2; (2) Strong identification and fixed alternative whereby µ̃2n = µ̃2/d2n

and ∆ = ∆̃; (3) Weak identification and fixed alternative where ∆ = ∆̃ and µ̃2n → µ̃2, where µ̃2 is

some finite positive value. Note that weak identification and local alternative is not discussed since

it has no power. Defining Λ0,i(∆) := E(ẽi,∆ṽi)(ẽi,∆ṽi)′, we make the following assumption:

Assumption 4. For every sequence of ∆n → ∆† ∈ R, suppose 1
n

∑
i∈[n] Λ0,i(∆n)⊗ ZiZ

′
i → Σ(∆†)

and Z′Z
n → QZZ , where Σ(∆†) and QZZ are positive-definite matrices. Furthermore, assume that

supi ||Zi||F <∞.

Under the assumption that the errors in the DGP of (2.1) are independent and identically

distributed, the assumption that 1
n

∑
i∈[n] Λ0,i(∆n)⊗ZiZ

′
i → Σ(∆†) in assumption 4 can be removed.

Recall from (2.8) that the power of our proposed test involves the critical value that is itself

random. This randomness comes from the limit of eigenvalues of Dw̃n
:= diag(w̃1,n, ..., w̃K,n). Since

this is generally unknown, in order to derive the power properties of our test under fixed K, we

begin by showing some intermediate asymptotic properties pertaining to the critical value (2.7).

Lemma 4.1. Suppose Assumption 1, 2, 4 holds and we are under fixed K. Consider any estimator

Φ̂1(β0) satisfying (2.9). Then for fixed ∆ we have

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

= Op(1)

Under the alternative, for fixed K, the limiting distribution of the critical value Cα (see (A.19)

for its expression) becomes that of a weighted chi-square Fw∗-distribution. Given that the limit w∗

is unknown in practice, in order to discuss the power properties of our test, one straightforward
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method is to find the worst-case power property, i.e. we want to examine the values of w∗ =

(w∗
1, ..., w

∗
K) such that ||w∗||F = 1, w∗

i ≥ 0 and q1−α(Fw∗) is the largest it can be. We have the

following result due to Fleiss (1971):

Lemma 4.2. For any vector a ∈ RK for some fixed dimension K such that
∑

i∈[K] ai = 1 and each

ai ≥ 0, we have

q1−α(χ
2
1) ≥ q1−α

∑
ℓ∈[K]

aℓχ
2
1,ℓ


where the χ2

1,ℓ are independent chi-squares with one-degree-of-freedom

Note that for fixed K, by expression (A.19), Lemma 4.1 and 4.2, we can obtain an upper bound

for the power of our test under the worst-case scenario’s power

P
(
Q̂(β0) > q1−α(χ

2(1)) +Op(1)
)
≤ P

(
Q̂(β0) > q1−α(Fw̃n

) +Op(1)
)

Combining lemmas 4.1 and 4.2, we can show that our test consistently differentiates the null from

the alternative. The requirement is that the concentration parameter µ̃2n diverges to infinity. This

requirement is similar to Mikusheva and Sun (2022)[Theorem 1] (this was established for diverging

instruments), which shows that for any set of bounded concentration parameter, there is no test

that can consistently differentiate the null from the alternative. This result is formally given as:

Theorem 6. Suppose Assumption 1, 2, 4 holds and we are under fixed K. For any estimator

Φ̂1(β0) that satisfies (2.9), our test consistently differentiates the null from alternative, i.e.

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= 1

for any fixed ∆ ̸= 0, whenever µ̃2n → ∞.

To simplify the discussion for the power properties of the remaining cases, we assume without

loss of generality that under weak identification, µK ≡ µ̃,14 while under strong identification,

dnµK ≡ µ̃, where µ̃ ∈ RK is some constant. Denote Ω∗(β0) := limn→∞Ω(β0) defined in (2.6). We

have the following result:

Theorem 7. Suppose Assumption 1, 2, 4 holds and we are under fixed K. Furthermore, let pnΠ′Π
K =

O(1) and suppose Ω∗(β0) is well-defined. Then under strong-identification and local alternative, for

14Under weak identification, µ′
KµK ≡ µ̃2

n → µ̃2 ∈ R. This implies that µK must be bounded. By Bolzano-
Weierstrass, for every sub-sequence of µK , there exists a further sub-sequence µKj that converges to µ, where
µ′µ = µ̃2. Therefore, instead of arguing along sub-sequences, the simplification that µK ≡ µ̃ allows us to argue along
the full sequence.
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any estimator Φ̂1(β0) that satisfies (2.9),

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
where w∗ = (w∗

1, ..., w
∗
K) are the eigenvalues of Ω∗(β0)

Note that w∗
i ≥ 0 and

∑
i∈[K]w

∗
i = 1. We can diagonalize Ω∗(β0) = Q∗′D∗Q

∗
such that

Q∗Q∗′ = Q∗′Q∗ = IK , with D∗ = diag(w∗
1, ..., w

∗
K). Then we can express the asymptotic power

under strong-identification and local alternative as

P

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α(

∑
i∈[K]

w∗
i χ

2
1,i)


where Mi := ∆̃2(ι′iQ

∗Σ(0)µ̃)2 is the non-centrality parameter, by which the power of the test depends

on. Furthermore, we can show that our test has certain desirable properties; in particular, our test is

admissible in some class of tests. Consider the test ϕα,w∗ := 1
{∑

i∈[K]w
∗
i χ

2
1,i(Mi) > q1−α(

∑
i∈[K]w

∗
i χ

2
1,K)

}
.

Then we have the following result.

Corollary 4.1. Let Φα be the class of size-α tests for H0 : M1 = ... = MK = 0 constructed based

on K independent chi-squares (χ2
1,i, ..., χ

2
1,K). Then ϕα,w∗ is an admissible test within Φα.

Corollary 4.1 relates back to Theorem 7 in the sense that our test is admissible over tests in

some class under strong-identification and local-alternative. Finally, we can express the asymptotic

power of our test under weak-identification and fixed alternative:

Theorem 8. Suppose Assumption 1, 2, 4 holds and we are under fixed K. Assume Ω∗(β0) is well-

defined. Then under weak-identification and fixed alternative, if we further assume that Π′Π = O(1),

then for any estimator Φ̂1(β0) that satisfies (2.9),

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= P

(
Z
(
Σ(∆̃)µ̃

)′
Ω∗(β0)Z

(
Σ(∆̃)µ̃

)
> q1−α(Fw∗)

)
where w∗ are the eigenvalues of Ω∗(β0) defined in (2.6).

Note that the assumption of Π′Π = O(1) automatically implies weak-identification for fixed K.

To see this, observe that WPA1,

µ̃2n = µ′KµK ≤ λmax(QZZ) · µ′K
(
Z ′Z

n

)−1

µK = λmax(QZZ)Π
′PΠ ≤ λmax(QZZ) ·Π′Π,

so that µ̃2n ≤ C for some constant C < ∞. As before, we can re-write the asymptotic power given
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in Theorem 8 as

P

∑
i∈[K]

w∗
i χ

2
1,i(Mi) > q1−α(

∑
i∈[K]

w∗
i χ

2
1,i)


where Mi := ∆̃2(ι′iQ

∗Σ(∆̃)µ̃)2 is the non-centrality parameter. This ensures that our test statistic

has power strictly greater than α. The asymptotic rejection criteria can be written as a test

ϕα,w∗ := 1
{∑

i∈[K]w
∗
i χ

2
1,i(Mi) > q1−α(

∑
i∈[K]w

∗
i χ

2
1,i

}
. Analogous to Theorem 7, we have the result

that under weak-identification and fixed-alternative, our test statistic is admissible in some class of

test. This follows from the following corollary.

Corollary 4.2. Let Φα be the class of size-α tests for H0 : M1 = ... = MK = 0 constructed based

on K independent chi-squares (χ2
1,i, ..., χ

2
1,K). Then ϕα,w∗ is an admissible test within Φα.

5 Simulation and Application

In this section, we compare the difference in power and size between existing tests and our test,

under two different data generating processes (DGP). To begin, we explicitly define these tests and

their corresponding critical-values.

5.1 Description of Tests

We consider the following tests:

(1) Our proposed test using the standard estimator which rejects whenever

Q̂(β0) > Cα(Φ̂
standard
1 (β0))

(2) Our proposed test using the cross-fit estimator, which rejects whenever

Q̂(β0) > Cα(Φ̂
cf
1 (β0))

(3) the Jackknifed AR-statistic for diverging K provided by Mikusheva and Sun (2022), which

rejects whenever

1√
Φ̂cf
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α (N (0, 1)) ;
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(4) the standard estimator for diverging K by Crudu et al. (2021) which rejects whenever

1√
Φ̂standard
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α (N (0, 1)) ;

(5) The classical AR-statistic for fixed K, i.e. we reject whenever

J ′
nΩ̂

−1
n Jn > q1−α(χ

2
K), where Jn := n−1/2Z ′e(β0) and Ω̂n :=

1

n
Z ′{diag(e21(β0), ..., e2n(β0))}Z

(6) the Jackknifed-AR for fixedK and homoskedastic errors given by Mikusheva and Sun (2022)[Sup-

plementary Appendix, Lemma S4.1], which rejects whenever

1√
Φ̂cf
1 (β0)

√
K

∑
i∈[n]

∑
j ̸=i

Pijei(β0)ej(β0) > q1−α

(
χ2
K −K√
2K

)

We denote the tests (1), (2), (3), (4), (5), (6) by Qstandard, Qcf , ARcf , ARstandard, ARclassical and

JARhomo respectively. We conduct 1, 000 simulation replications to obtain stable results.

5.2 Simulation Based on Hausman, Newey, Woutersen, Chao, and Swanson

(2012)

We consider the following model based on the DGP given by Hausman et al. (2012), with sample

size n = 400, and vary the number of instruments K ∈ {1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 40, 100, 200, 300}.
Let

Y = βX +WΓ +Dz1U1

X = πKz1 + U2

W = (1, ..., 1)′ ∈ Rn

U1 = ρ1U2 +

√
1− ρ21

ϕ2 + 0.864
(ϕv1 + 0.86v2),

zi1 ∼ N (0.5, 1), v1i ∼ N (0, z2i1), v2i ∼ N (0, 0.862),

Dz1 := diag(
√
1 + z211,

√
1 + z221, ...,

√
1 + z2n1)

U2i ∼ exponential(0.5)− 2, ϕ = 0.3, ρ1 = 0.3

We assume that the errors across different i are independent. Furthermore, z1 = (z11, z21, ..., zn1)

are independent from any error terms, and πK ∈ R is chosen to be such that the identification

strength is small; since the value of K affects identification strength, we have different values of

πK for different instruments. We consider values of πK such that for each K, the concentration
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parameter C ≈ 17.5.15 The diagonal matrix Dz1 allows U1 to be dependent on z1 but at the same

time has variance bounded away from zero, in the event some elements of z1 are close to zero. We

assume β = 0 and Γ = 1 to be the true parameters.

The ith instrument observation for K ≥ 6 is given by

Z ′
i := (z1i, z

2
1i, z

3
1i, z

4
1i, z

5
1i, z1iDi1, ..., z1iDi,K−5),

where Dik ∈ {0, 1} is a dummy variable with P(Dik = 1) = 1/2, so that Zi ∈ RK . For K ≤ 5, the

ith instrument observation is

Z ′
i := zi1 for K = 1,

Z ′
i := (zi1, zi2) for K = 2,

Z ′
i := (zi1, zi2, zi1zi2) for K = 3,

Z ′
i := (zi1, zi2, zi1zi2, z

2
i1) for K = 4,

Z ′
i := (zi1, zi2, zi1zi2, z

2
i1, z

2
i2) for K = 5,

zi2 ∼ N (0.5, 1) independent of zi1

Note that z2 := (z12, z22, ..., zn2)
′ does not affect the DGP, so that in some sense it is a ‘spurious’

instrument. It is added for smaller instruments to ensure that the C in assumption 3 is not too

large. We detail the probability of rejection under the null of β = β0 in the following table.

15We used the command ‘set.seed(1)’ for our simulation in R programming so that Z can be pinned down without

changing. After this was done, we calibrated the value of π so that C := (πz1)
′P0(πz1)√
K

= 17.5 for each K, where

P0 := P − diag(P ) and P := MWZ(Z′MWZ)−1(MW )Z′. Note that π changes with K. Furthermore, through
extensive simulation, the results will not change much when C changes by a little, say ±2.
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Table 1: Rejection Probability under Null

ARstandard Qstandard ARcf Qcf ARclassical JARhomo

(5%) (5%) (5%) (5%) (5%) (5%)

K = 1 0.071 0.048 0.074 0.052 0.048 0.052

K = 2 0.064 0.05 0.065 0.053 0.056 0.051

K = 3 0.086 0.067 0.091 0.073 0.057 0.072

K = 4 0.083 0.058 0.094 0.069 0.05 0.07

K = 5 0.08 0.058 0.092 0.066 0.062 0.077

K = 6 0.075 0.046 0.131 0.104 0.039 0.106

K = 8 0.079 0.048 0.121 0.1 0.033 0.108

K = 10 0.086 0.061 0.131 0.107 0.031 0.109

K = 15 0.066 0.035 0.095 0.071 0.034 0.079

K = 20 0.0567 0.047 0.094 0.073 0.022 0.077

K = 40 0.056 0.038 0.085 0.068 0.014 0.073

K = 100 0.056 0.042 0.85 0.065 0.002 0.075

K = 200 0.061 0.04 0.112 0.085 0 0.101

K = 300 0.053 0.043 0.115 0.96 0 0.109

Note: ARstandard, Qstandard, ARcf , Qcf , ARclassic, JARhomo corresponds to (4), (1), (3), (2), (5), (6)
discussed in Section 5.1 respectively. We reject at the 95% confidence-level (i.e. α = 0.05) and
bold values which are greater than or equal to 0.07.

Table 1 provides the probability of rejection under the null for different values of K. The

ARstandard suffers from size issues when the number of instrument is small. Our corresponding

proposed test Qstandard resolves this. Similarly, severe size distortion occurs for ARcf
16; our corre-

sponding test Qcf tries to resolve this, albeit partially successful. However, notice that Qcf reduces

the size distortion by about 20%−30%. The classical AR test for fixed K, denoted ARclassical does

not suffer size distortion; however, we see that it suffers from substantial power decline for larger

values of instruments, say K ≥ 6, as seen from Figure 4–8. Finally, the Jackknifed-AR denoted

by JARhomo suffers from size-distortion even for small instruments, say K = 3. This is expected

since the critical value of the test is based on homoskedastic errors, while the errors of the DGP

are heteroskedastic.

16The size-distortion of ARcf persists even under large K (say K ≥ 200) due to pn := maxi Pii being very close to
one (it is roughly 0.992 in the simulation when K = 300). Recall from Theorem C.0.2 that one of the key assumptions

in assuring Φ̂cf
1 (β0) satisfies (2.9) is that pn ≤ δ < 1 for some δ. Note that even though this assumption was made

in Theorem C.0.1, it is actually not needed for the consistency of Φ̂standard
1 (β0), which explains why ARstandard has

reasonable size for larger K.
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In order to obtain a fair power-comparison between the tests due to size-distortion, for each

given K we compute the (1 − α)-quantile of each distribution under the null, using 1, 000 sample

points from the test statistic. We then reject the tests whenever the test statistic is greater than

this null-computed quantile.17
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Figure 2: Power curve for K = 1, 2
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.

17Note that these null-computed quantiles are in general infeasible in the sense that they cannot be constructed
without knowing the true DGP and parameters
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Figure 3: Power curve for K = 3, 4
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figure 4: Power curve for K = 5, 6
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figure 5: Power curve for K = 8, 10
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figure 6: Power curve for K = 15, 20
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figure 7: Power curve for K = 40, 100
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figure 8: Power curve for K = 200, 300
Note: The orange line with circle represents Qstandard; the red line with upward-pointing triangle
represents ARcf ; the purple line with a cross represents Qcf ; the green line with a cross represents
ARstandard; the blue dotted line with diamond represents JARhomo; the black dotted line with
downward-pointing triangle represents ARclassical. The first horizontal dotted black line represents
5%; the second represents 10%; the third represents 15%.
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Figures 2-8 plot the size-adjusted power curve for the aforementioned tests. We make a few

observations. First, the two proposed tests Qstandard and Qcf (which we simply call Q-tests) have

similar power over different instruments, which is expected as their rejection rate are asymptotically

equal under every alternative. Second, the size-adjusted power of the Q-tests is as good as the

ARstandard and ARcf when the number of instruments is large (say K ≥ 100), while all tests have

approximately equal power whenever the number of instruments is small (say K ≤ 5). Third, for

moderate to large number of instruments (say K ≥ 6), the power of the ARclassical is comparatively

lower than the other tests. Finally, when the number of instruments is large, the power curves for

ARcf and JARhomo are similar because the two tests differ only in the critical value used (i.e.

q1−α(N (0, 1)) for the former and q1−α(
χ2
K−K√
2K

) for the latter). As K → ∞,
χ2
K−K√
2K
⇝ N (0, 1), so

that eventually, for larger instruments, the rejection rate of these two tests should be equal.

5.3 Empirical Application

In this section, we consider the linear IV regression with underlying specification based on Angrist

and Krueger (1991), using the full original dataset.18 In particular, we consider the 1980s census of

329,509 men born in 1930-1939 based on Angrist and Krueger’s (1991) dataset. The model follows

Mikusheva and Sun (2022), which can be written explicitly as

ln Wi = Constant+H⊤
i ζ +

38∑
c=30

Y OBi,cξc +
∑
s ̸=56

POBi,sηs + βEi + γi (5.1)

Ei = Constant+H⊤
i λ+

38∑
c=30

Y OBi,cµc +
∑
s ̸=56

POBi,sαs + Zi,K + εi

whereWi is the weekly wage, Ei is the education of the i-th individual, Hi is a vector of covariates,
19

Y OBi,c is a dummy variable indicating whether the individual was born in year c = {30, 31, ..., 39},
while QOBi,j is a dummy variable indicating whether the individual was born in quarter-of-birth

j ∈ {1, 2, 3, 4}. POBi,s is the dummy variable indicating whether the individual was born in state

s ∈ {51 states}.20 Both γi and εi are the error terms. We consider eighteen varying numbers of

instruments; in particular, we vary

K = {3, 10, 20, 30, 50, 100, 150, 180, 200, 250, 300, 350, 400, 450, 600, 765, 918, 1071},

18The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty/angrist/data1/data/angkru1991.

19The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT, WNOCENT,
SOATL, ESOCENT, WSOCENT, and MT.

20The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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so that Zi,K varies with K. Specifically, we have

Zi,3 =
3∑

j=1

QOBi,jδj ,

Zi,10 =

1∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c, ..., Zi,30 =

3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c,

Zi,50 =
1∑

j=1

∑
s ̸=56

QOBi,jPOBi,sδj,s, ..., Zi,150 =
3∑

j=1

∑
s ̸=56

QOBi,jPOBi,sδj,s,

Zi,180 =

3∑
j=1

∑
s ̸=56

QOBi,jPOBi,sδj,s +

3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c,

Zi,200 =
33∑

c=30

∑
s ̸=56

Y OBi,jPOBi,sQOB1,jψc,s, ..., Zi,450 =
38∑

c=30

∑
s ̸=56

Y OBi,jPOBi,sQOB1,jψc,s,

Zi,600 =
38∑

c=30

∑
s ̸=56

Y OBi,jPOBi,sψc,s +
3∑

j=1

∑
s ̸=56

QOBi,jPOBi,sδj,s,

Zi,765 =

34∑
c=30

3∑
j=1

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s, ...

..., Zi,1071 =

36∑
c=30

3∑
j=1

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s

The coefficient β is the return to education. We vary this β across 1,000 equidistant grid-points

from -0.5 to 0.5 (i.e., β ∈ {−0.5,−0.499,−0.498, ..., 0, ..., 0.499, 0.5}) and solve for the range of β

where the null hypothesis cannot be rejected, according to section 5.1. Specifically, we can write

the above model as

ln Wi = CiΓ + βEi + γi (5.2)

Ei = Ciτ + ZiΘ+ εi, (5.3)

where Ci is a (329,509×71)-matrix of controls containing the first four terms on the right-hand of

(5.1). We can then partial out the controls Ci by multiplying each equation (5.2) and (5.3) by the

residual matrix I − C(C⊤C)−1C⊤ to obtain a form analogous to that in the main text:

Yi = Xiβ + ei,

Xi = Πi + vi
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Then, at each grid-point we take β0 = β and compute ARstandard, Qstandard, ARcf , Qcf , ARclassical

and JARhomo. We reject the chosen value of β0 for if it exceeds the one-sided 5%-quantile of

the corresponding critical-value (i.e. α = 0.05 with the tests and their critical-value described in

Section 5.1). Note that the full QOB, Y OB,POB or their interactions are not used in order to

avoid multicollinearity. We report the upper and lower bounds of the confidence set for which the

null cannot be rejected in Table 2 below.

Table 2: Confidence Interval

ARstandard Qstandard ARcf Qcf ARclassical JARhomo

(5%) (5%) (5%) (5%) (5%) (5%)

K = 3 [0.056,0.147] [0.053,0.15] [0.056,0.147] [0.053,0.15] [0.053,0.151] [0.052,0.151]
K = 10 [-0.007,0.16]] [-0.011,0.165] [-0.007,0.16]] [-0.011,0.165] [-0.011,0.166] [-0.011,0.165]

K = 20 [0.017,0.174] [0.014,0.178] [0.017,0.174] [0.014,0.178] [0.014,0.18] [0.014,0.178]

K = 30 [0,0.169] [-0.002,0.172] [0,0.169] [-0.002,0.172] [-0.002,0.177] [-0.002,0.172]

K = 50 [0.005,0.183] [0.002,0.188] [0.005,0.183] [0.002,0.188] [-0.01,0.188] [0.002,0.188]

K = 100 [0.018,0.2] [0.017,0.202] [0.018,0.2] [0.017,0.202] [0.009,0.203] [0.017,0.202]

K = 150 [0.023,0.208] [0.022,0.21] [0.023,0.208] [0.022,0.21] [0.022,0.212] [0.022,0.21]

K = 180 [0.008,0.201] [0.007,0.202] [0.008,0.202] [0.007,0.202] [0.007,0.207] [0.007,0.202]

K = 200 [-0.216,0.23] [-0.223,0.233] [-0.218,0.23] [-0.224,0.233] [-0.214,0.236] [-0.224,0.233]

K = 250 [-0.118,0.258] [-0.122,0.261] [-0.12,0.258] [-0.123,0.261] [-0.111,0.256] [-0.122,0.261]

K = 300 [-0.097,0.24] [-0.1,0.242] [-0.098,0.24] [-0.1,0.242] [-0.085,0.238] [-0.1,0.242]

K = 350 [-0.107,0.28] [-0.11,0.283] [-0.108,0.28] [-0.111,0.283] [-0.092,0.274] [-0.11,0.283]

K = 400 [-0.078,0.305] [-0.081,0.308] [-0.079,0.305] [-0.081,0.308] [-0.058,0.298] [-0.081,0.308]

K = 450 [-0.105,0.29] [-0.107,0.293] [-0.106,0.29] [-0.108,0.293] [-0.092,0.281] [-0.107,0.293]

K = 600 [-0.018,0.228] [-0.019,0.229] [-0.019,0.228] [-0.019,0.229] [-0.013,0.224] [-0.019,0.229]

K = 765 [-0.09,0.192] [-0.093,0.194] [-0.09,0.192] [-0.093,0.194] [-0.125,0.163] [-0.092,0.194]

K = 918 [-0.055,0.182] [-0.058,0.183] [-0.055,0.182] [-0.057,0.184] [-0.076,0.157] [-0.056,0.183]

K = 1071 [-0.042,0.19] [-0.044,0.192] [-0.041,0.19] [-0.043,0.192] [-0.064,0.168] [-0.042,0.191]

Note: ARstandard, Qstandard, ARcf , Qcf , ARclassic, JARhomo corresponds to (4), (1), (3), (2), (5), (6)
discussed in Section 5.1 respectively.

Table 2 highlights a few salient features of our proposed method, which we discuss in detail.

First of all, notice that the proposed statistic Qstandard and Qcf has similar confidence intervals

(C.I.). Recall from Table 1 that the size-control for Qcf was slightly distorted due to pn being

extremely close to one, a requirement for the validity of the cross-fit variance estimator Φ̂cf
1 (β0).

In the empirical application pn is bounded away from one, so that Qstandard and Qcf should be

expected to be close to each other. This can also be evidenced from ARstandard’s C.I. being close

to ARcf over all values of K. Second, ARclassical’s C.I. is quite different from all other statistics
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for larger K, which is to be expected since ARclassical is meant for testing under fixed K. However,

notice that Qstandard and Qcf ’s C.I. are close to ARclassical for smaller K values, while Qstandard

and Qcf differs from ARstandard and ARcf at these values, which suggests that the C.I. for both

ARstandard and ARcf may not be valid for smaller K. For large K (say K ≥ 350), Qstandard and

Qcf ’s C.I. converges to that of ARstandard and ARcf . We can therefore see that our proposed test

ensures that the C.I. we obtain is correct. Third, JARhomo’s C.I. converges to AR′
cfs C.I. as the

number of instruments increase. This is expected since the test JARhomo converges to ARcf as

K → ∞.

Fourth, comparing Qcf and JARhomo for small K, we see that their C.I. are very similar. We

can infer from this that the data seems to be exhibiting homoskedastic variance. This requires some

explanation. Consider a fixed ∆ not necessarily zero. Note that under some additional assumptions,

we can show that under fixed K, WPA1, we have21

||w̃n − wn|| ≈ 0

This implies that WPA1, Fw̃ ⇝ Fw approximately. Under homoskedasticity, wi,n = 1
K , so that

Fw =
χ2
K
K . Therefore, WPA1 approximately,

q1−α(Fw̃)− 1√
2||w̃n||F

→ q1−α

 χ2
K/K − 1

√
2
√∑

i∈[K]
1
K2

 = q1−α

(
χ2
K −K√
2K

)

By rearrangement, the rejection criteria for Qcf becomes: reject whenever

1√
KΦ̂cf

1 (β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

(
q1−α(Fw̃)− 1√

2||w̃n||F

)
≈ q1−α

(
χ2
K −K√
2K

)

Furthermore, recall that the rejection criteria for JARhomo is given as

1√
KΦ̂cf

1 (β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

(
χ2
K −K√
2K

)

We therefore conclude that under homoskedasticity, for fixed K, the rejection rate of Qcf and

JARhomo should be approximately equal. Since the C.I. of both tests are similar, we can infer

somewhat that the variance is homoskedastic. As a form of robustness check, note that ARclassical

and JARhomo has similar C.I. for smallK, where we recall ARclassical is robust to heteroskedasticity

under fixed K. This further confirms our intuition. To summarize point four, our proposed tests

21In particular, if we impose the additional assumption that maxi∈[n]
∆2Π2

i∑
i∈[n] Piiσ

2
i (β0)

≈ 0, then we can see that this

result follows from Lemma B.3
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Qstandard and Qcf can serve to check for homoskedastic variance.
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A Proofs for Main text

A.1 Proof of Theorem 1

For any vector a, b ∈ Rn, we define Qa,b :=
∑

i∈[n]

∑
j ̸=i aiPijbj√
K

.

We will first prove the first part of Theorem 1. This is done in Step 1–Step 4. The proof of
the second part of Theorem 1 is shown in Step 5.

Recall that e = ẽ+ PW ẽ and E = ε+ PW ε, so that we have

Qe,e = Qẽ,ẽ + 2Qẽ,PW ẽ +QPW ẽ,PW ẽ

QE,E = Qε,ε + 2Qε,PW ε +QPW ε,PW ε (A.1)

We want to strongly approximate these two equations. It is instructive to first provide an outline
for our proof before delving into it. To do so, consider a sequence of independent random variables
{(ϑi}ni=1 with the criteria that

(i) Eϑi = 0

(ii) E[ϑ2i ] = E[ẽ2i ] = E[ε2i ]

(iii) {(ϑi}ni=1 is independent of {ẽi}ni=1 and {εi}ni=1

Such a sequence will always exist by the Kolmogorov-Extension-Theorem. This sequence will be
used throughout the proof. We define ϑ := (ϑ1, ..., ϑn)

′.

The idea of the proof is to express

Qe,e −QE,E = Remaindern +Op(
pnd

2
W

K1/2
) (A.2)

The term ‘Remaindern’ collects all the difference in terms that cannot be collected as Op(
pnd2W
K1/2 )-

terms. To be precise, step 1 will imply that QPW ẽ,PW ẽ−QPW ε,PW ε = Op(
pnd2W
K1/2 ), so that this term

is collected in the last term of the right-hand-side of (A.2). In step 2 we deal with the difference
between the middle-term on the right-side of (A.1), which implies that

2Q(ẽ,PW ẽ − 2Qε,PW ε = Hn +Op(
pnd

2
W

K1/2
)

where Hn := − 1√
K

∑
i∈[n]

∑
j ̸=i PiiP

W
ij {ẽiẽj − ϑiϑj}. Thus Hn goes into the ‘Remaindern’ term of

(A.2), with the remaining terms collected as Op(
pnd2W
K1/2 )-terms. In step 3 we deal with the first term

on the right-side of (A.2) (i.e. Qẽ,ẽ − Qε,ε) and note that this term goes into ‘Remaindern’. We
will then collect all the terms in ‘Remaindern’ and strongly approximate these terms. Specifically,
we can express

Remaindern = Fn −Fn
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where

Fn := Qẽ,ẽ −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij ẽiẽj ,

Fn := Qε,ε −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij εiεj

and we strongly-approximate these two terms. Note that Fn is the part of the terms in ‘Remaindern’
that belongs to Qe,e, while Fn belongs to QE,E . Step 4 puts everything together and completes the
proof for the first part of Theorem 1. Step 5 completes the proof for the second part of Theorem
1.

Step 1: We show that for any

QPW ẽ,PW ẽ −QPWϑ,PWϑ = Op(
pnd

2
W

K1/2
)

QPW ε,PW ε −QPWϑ,PWϑ = Op(
pnd

2
W

K1/2
) (A.3)

Consider first a sequence of independent random variables {Ui}ni=1 with bounded first and second

moments. Furthermore, let {Ũi}ni=1 be independent random variables, as well as independent from

{Ui}ni=1. Suppose that the EUi = EŨi and EU2
i = EŨ2

i for every i ∈ [n]. We will show that

QPWU,PWU −Q
PW Ũ ,PW Ũ

= Op(
pnd

2
W

K1/2
) (A.4)

Note that PPW = 0, so that

QPWU,PWU =
1√
K
U ′PWPPWU − 1√

K

∑
i∈[n]

Pii{(PW
i )′U}2 = − 1√

K

∑
i∈[n]

Pii{(PW
i )′U}2

with U := (U1, ..., Un)
′. Denoting U∗

i := Ui − EUi, Ũ
∗
i := Ũi − EŨi, we have

(QPWU,PWU −Q
PW Ũ ,PW Ũ

) = − 1√
K

∑
i∈[n]

Pii

([
(PW

i )′U∗ + (PW
i )′EU

]2 − [(PW
i )′Ũ∗ + (PW

i )′EU
]2)

= − 1√
K

∑
i∈[n]

Pii[(P
W
i )′U∗]2 +

1√
K

∑
i∈[n]

Pii[(P
W
i )′Ũ∗]2 − 1√

K

∑
i∈[n]

Pii(P
W
i )′U∗(PW

i )′EU

+
1√
K

∑
i∈[n]

Pii(P
W
i )′Ũ∗(PW

i )′EU ≡ C1 + C2 + C3 + C4
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By the fact that EU∗ = 0,

E

∣∣∣∣∣∣ 1√
K

∑
i∈[n]

Pii((P
W
i )′U∗)2

∣∣∣∣∣∣ = 1√
K

∑
i∈[n]

Pii

∑
ℓ∈[n]

(PW
iℓ )2V ar(Ui) ≤

Cpn√
K

∑
i∈[n]

∑
ℓ∈[n]

(PW
iℓ )2

=
Cpn√
K

∑
i∈[n]

PW
ii =

CpndW
K1/2

,

so that by Markov inequality, C1 = Op(
pndW
K1/2 ). In a similar manner, we can show that C2 =

Op(
pndW
K1/2 ). Next,

EC2
3 ≤ 1

K

∑
i,i′∈[n]

PiiPi′i′ |(PW
i )′EU · (PW

i′ )′EU |
∑
ℓ∈[n]

|PW
iℓ P

W
i′ℓ |V ar(Ui)

(i)

≤ Cp2n
K

∑
i,i′∈[n]

|(PW
i )′EU · (PW

i′ )′EU |

∑
ℓ∈[n]

(PW
iℓ )2 ·

∑
ℓ∈[n]

PW
i′ℓ


=
Cp2n
K

∑
i,i′

|(PW
i )′EU · (PW

i′ )′EU | · PW
ii P

W
i′i′

≤ Cp2n
K

∑
i,i′

∑
ℓ,ℓ′

|PW
iℓ P

W
i′ℓ | · PW

ii P
W
i′i′ =

Cp2n
K

(
∑
ℓ∈[n]

∑
i∈[n]

|PW
iℓ P

W
ii |)2

(ii)

≤ Cp2n
K

∑
ℓ∈[n]

(
∑
i∈[n]

(PW
iℓ )2 ·

∑
i∈[n]

(PW
ii )2)

2

≤ Cp2n
K

(
∑
ℓ∈[n]

PW
ℓℓ dW )2 =

Cp2n
K

d4W

where (i) and (ii) follows from Cauchy-Schwartz inequality. Hence C3 = Op(
pnd2W
K1/2 ). In a similar

manner, C4 = Op(
pnd2W
K1/2 ), so that (A.4) follows. An application of (A.4) with (U, Ũ) replaced by

(ẽ, ϑ) and (ε, ϑ) yields the first and second equation of (A.3) respectively.

Step 2: We show that

2Qẽ,PW ẽ − 2Qϑ,PWϑ = H(1)
n − 2√

K

∑
i∈[n]

PiiP
W
ii (ẽiẽj − ϑiϑj) = H(1)

n +Op(
pnd

2
W

K1/2
)

2Qε,PW ε − 2Qϑ,PWϑ = H(2)
n − 2√

K

∑
i∈[n]

PiiP
W
ii (εiεj − ϑiϑj) = H(2)

n +Op(
pnd

2
W

K1/2
) (A.5)

where H(ℓ)
n := − 2√

K

∑
i∈[n]

∑
j ̸=i PiiP

W
ij

{
ζ
(ℓ)
i ζ

(ℓ)
j − ϑiϑj

}
and ζ

(ℓ)
i := ẽi or εi for ℓ = 1 or 2 respec-

tively.

We first derive a general result: consider a sequence of independent random vectors {(Ui, Ti)
′}ni=1.

Suppose we have another sequence of independent random vectors {(Ũi, T̃i)
′}ni=1 such that for every

i ∈ [n], E(Ui, Ti) = E(Ũi, T̃i) and E[(Ui, Ti)(Ui, Ti)
′] = E[(Ũi, T̃i)(Ũi, T̃i)

′]. We assume the two se-
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quences are independent from each other, and that the first two moments are bounded. By noting
PWP = 0,

QPWU,T =
1√
K
U ′PWPT − 1√

K

∑
i∈[n]

Pii(P
W
i )′U · Ti = − 1√

K

∑
i∈[n]

Pii(P
W
i )′U · Ti

= − 1√
K

∑
i∈[n]

Pii

∑
j ̸=i

PW
ij UjTi −

1√
K

∑
i∈[n]

PiiP
W
ii UiTi,

which implies that

QPWU,T −Q
PW Ũ ,T̃

= − 1√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij UjTi +

1√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij Ũj T̃i +Op(

pnd
2
W

K1/2
), (A.6)

where the last equality follows from Markov inequality and

E

 1√
K

∑
i∈[n]

PiiP
W
ii (UiTi − ŨiT̃i)

2

=
1

K

∑
i∈[n]

P 2
ii(P

W
ii )2E(UiTi − ŨiT̃i)

2 ≤ Cp2n
K

∑
i∈[n]

PW
ii =

Cp2ndW
K

.

If replace (Ui, Ti) with (ẽi, ẽi), as well as (Ũi, T̃i) with (ϑi, ϑi), then an application of (A.6) would
yield the first equation of (A.5). The second equation of (A.5) follows by replacing (Ui, Ti) with
(εi, εi) and (Ũi, T̃i) with (ϑi, ϑi).

Step 3: Define

Fn := Qẽ,ẽ −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij ẽiẽj and

Fn := Qε,ε −
2√
K

∑
i∈[n]

∑
j ̸=i

PiiP
W
ij εiεj

We will show that there exists a random variable F ′
n

d
= Fn such that

Fn = F ′
n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3 (A.7)

Define gn(x) := max
(
0, 1− d(x,A3δn )

δn

)
and fn(x) := Egn(x + hnN ), where N has a standard

normal distribution and hn := 3δn
Ch

for some Ch > 1. By Pollard (2001)[Theorem 10.18], fn(·) is
twice-continuously differentiable such that for all x, y,∣∣∣∣fn(x+ y)− fn(x)− y∂fn(x)−

1

2
y2∂2fn(x)

∣∣∣∣ ≤ |y|3

9δnh2n
(A.8)
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and

1−B(Ch)1{x ∈ A} ≤ fn(x) ≤ B(Ch) + (1−B(Ch))1{x ∈ A3δn}, (A.9)

where Ch := 3δn
hn

and B(Ch) :=
(

C2
h

exp(C2
h−1)

)1/2
. Furthermore, define

Gn(a1, ..., an) :=

∑
i∈[n]

∑
j ̸=i{aiPijaj − 2PiiP

W
ij aiaj)}√

K

so Fn = Gn(ẽ1, ..., ẽn) and Fn = Gn(ε1, ..., εn). By triangle inequality,

|Efn(Fn)− Efn(Fn)|

≤
∑
i∈[n]

|Efn(Gn(ẽ1, ..., ẽi, εi+1, ..., εn))− Efn(Gn(ẽ1, ..., ẽi−1, εi, ..., εn))| , (A.10)

where Gn(ε1, ..., εn, ẽn+1) ≡ Gn(ε1, ..., εn) and Gn(ε0, ẽ1, ..., ẽn) ≡ Gn(ẽ1, ..., ẽn). Then consider the
last term of the telescoping sum. Define

λn−1 :=

∑
i∈[n−1]

∑
j ̸=i,j∈[n−1]{ẽiPij ẽj − 2PiiP

W
ij ẽiẽj}√

K

∆n :=
2ẽn

∑
i∈[n−1] ẽiPin
√
K

−
2ẽn

∑
i∈[n−1] PiiP

W
in ẽi√

K
−

2Pnnẽn
∑

i∈[n−1] P
W
in ẽi√

K

∆̃n :=
2εn

∑
i∈[n−1] ẽiPin
√
K

−
2εn

∑
i∈[n−1] PiiP

W
in ẽi√

K
−

2Pnnεn
∑

i∈[n−1] P
W
in ẽi√

K

so that Gn(ẽ1, ..., ẽn) = ∆n + λn−1 and Gn(ẽ1, ..., ẽn−1, εn) = ∆̃n + λn−1. Further denote In−1 as
the σ-field generated by {εi, ẽi}i∈[n−1] and observe that

E(∆n|In−1) = E(∆̃n|In−1) and

E(∆2
n|In−1) = E(∆̃2

n|In−1),

so that together with (A.8), letting x = λn−1, y = ∆n and ∆̃n, we have

|Efn(Gn(ẽ1, ..., ẽn))− Efn(Gn(ẽ1, ..., ẽn−1, εn))|

≤ |E∂fn(λn−1)(∆̃n −∆n)|+
1

2
|E∂2fn(λn−1)(∆̃

2
n −∆2

n)|+
E|∆̃n|3 + E|∆n|3

9δnh2n

=
E|∆n|3 + E|∆̃n|3

9δnh2n
. (A.11)

We proceed to bound E|∆n|3. Let {ξi}i∈[n−1] be a sequence of independent Rademacher random
variables. Using the simple inequality that |a+ b|3 ≤ 2(a2 + b2) · |a+ b| ≤ 8(|a|3 + |b|3), we have by
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independence of the errors across i that

E|∆n|3 ≤
C

K3/2
E

∣∣∣∣∣∣
∑
i∈[n]

(Pin + PiiP
W
in + PnnP

W
in )ẽi

∣∣∣∣∣∣
3

(A.12)

Denoting θi as either Pinẽi, PiiP
W
in ẽi or PnnP

W
in ẽi, we have

E

∣∣∣∣∣∣
∑

i∈[n−1]

θi

∣∣∣∣∣∣
3
(i)

≤ 8E

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣
3
(ii)

≤ 8

∫ ∞

0
t2P

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣ > t

 dt

= 8E
∫ ∞

0
t2P

∣∣∣∣∣∣
∑

i∈[n−1]

θiξi

∣∣∣∣∣∣ > t

∣∣∣∣In−1

 dt
(iii)

≤ 16E
∫ ∞

0
t2exp(−1

2

t2∑
i∈[n−1] θ

2
i

)dt

(iv)

≤ CE

 ∑
i∈[n−1]

θ2i

3/2
(v)

≤ C

E(
∑

i∈[n−1]

θ2i )
2

3/4

(A.13)

where (i) follows from the Symmetrization Lemma of Van der Vaart and Wellner (1996)[Lemma
2.3.1]; (ii) follows from the integral identity; (iii) follows from Hoeffding’s inequality (see Van der
Vaart andWellner (1996)[Lemma 2.2.7]); (iv) follows from the change of variable s = t2/

∑
i∈[n−1] θ

2
i ;

(v) follows from Holder’s inequality. Note that for θi = Pinẽi,

E(
∑

i∈[n−1]

θ2i )
2 =

∑
i∈[n−1]

∑
j∈[n−1]

Eθ2i θ
2
j ≤ C

∑
i∈[n]

∑
j∈[n]

P 2
inP

2
jn = CP 2

nn,

so that E(
∑

i∈[n−1]

θ2i )
2

3/4

≤ CP 3/2
nn

Similarly we can obtainE(
∑

i∈[n−1]

θ2i )
2

3/4

≤ C(pnP
W
nn)

3/2 if θi = PiiP
W
in ẽi and

E(
∑

i∈[n−1]

θ2i )
2

3/4

≤ C(PnnP
W
nn)

3/2 if θi = PnnP
W
in ẽi

Hence, by (A.12) and (A.13), we have

E|∆̃n|3 ≤ C
P

3/2
nn + p

3/2
n (PW

nn)
3/2 + (PnnP

W
nn)

3/2

K3/2
.
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Similarly, we have

E|∆n|3 ≤ C
P

3/2
nn + p

3/2
n (PW

nn)
3/2 + (PnnP

W
nn)

3/2

K3/2
.

In general, for any generic jth term, we can show that

|Efn(Gn(ẽ1, ..., ẽn))− Efn(Gn(ẽ1, ..., ẽn−1, εn))| ≤ C
P

3/2
jj + p

3/2
n (PW

jj )
3/2 + (PjjP

W
jj )

3/2

K3/2δnh2n

where the constant C is independent of n. By (A.10), letting hn :=

[
Ch(p

1/2
n +p

3/2
n (pWn )1/2dW )

K1/2

]1/3
and

recalling δn = Chhn

3 , we have

|Efn(Fn)− Efn(Fn)| ≤ C

∑
i∈[n] P

3/2
ii + p

3/2
n (PW

ii )3/2

K3/2δnh2n
≤ C

p
1/2
n + p

3/2
n (pWn )1/2dW

K1/2δnh2n
≤ C

C2
h

.

Therefore, by (A.9) we have

P {Fn ∈ A} ≤ Efn(Fn)

1−B(Ch)
≤ 1

1−B(Ch)

(
Efn(Fn) +

C

C2
h

)
≤ 1

1−B(Ch)

(
B(Ch) + (1−B(Ch))P

{
Fn ∈ A3δn

}
+

C

C2
h

)

= P
{
Fn ∈ A3δn

}
+
B(Ch) +

C
C2

h

1−B(Ch)

By Strassen’s Theorem (see Pollard (2001)[Theorem 10.8]),there exists a random variable F ′
n

d
= Fn

such that

P

|Fn −F ′
n| > Ch

[
Ch(p

1/2
n + p

3/2
n (pWn )1/2dW )

K1/2

]1/3 ≤
B(Ch) +

C
C2

h

1−B(Ch)

Fix any τ > 0. Given that B(Ch) → 0 whenever Ch → ∞, we can find a sufficiently large Ch such

that
B(Ch)+

C

C2
h

1−B(Ch)
≤ τ , implying

|Fn −F ′
n| = Op

[(p1/2n + p
3/2
n (pWn )1/2dW )

K1/2

]1/3 ,

so (A.7) is shown.

Step 4: We complete the proof. We can re-express

Qe,e = Fn +Rn
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and

QE,E = Fn +Rn

where Fn,Fn were defined in Step 3, so clearly Rn = Qe,e −Fn; similarly Rn = QE,E −Fn. Define

R̃n := − 2√
K

∑
i∈[n]

PiiP
W
ij ϑiϑj +QPWϑ,PWϑ

and note that by (A.3) and (A.5),

Rn − R̃n = Op(
pnd

2
W

K1/2
) (A.14)

and

Rn − R̃n = Op(
pnd

2
W

K1/2
). (A.15)

Therefore, by noting that Fn,Fn, R̃n are mutually independent, we have

Qe,e = Fn +Rn = F ′
n + (Fn −F ′

n) + (Rn − R̃n) + R̃n

= F ′
n + R̃n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2


d
= Fn + R̃n +Op

[p1/2n + p
3/2
n (pWn )1/2dW

K1/2

]1/3
+
pnd

2
W

K1/2


= Fn +Rn − (Rn − R̃n) +Op

[p1/2n + p
3/2
n (pWn )1/2dW
K1/2

]1/3
+
pnd

2
W

K1/2


= QE,E +Op

[p1/2n + p
3/2
n (pWn )1/2dW
K1/2

]1/3
+
pnd

2
W

K1/2

 .

where the second line of the preceding equation follows from (A.7) and (A.14); the last line follows
from (A.15). This gives the first result of Theorem 1.

Step 5: We prove the second part of the Theorem here. Note that by PWP = 0,

e′Pe

K
=
ẽ′P ẽ

K
=

1√
K
Qẽ,ẽ +

∑
i∈[n] Piiẽ

2
i

K
,

and similarly

E ′PE
K

=
1√
K
Qε,ε +

∑
i∈[n] Piiε

2
i

K
.
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Then ∑
i∈[n] Piiẽ

2
i

K
−
∑

i∈[n] Piiϑ
2
i

K
= Op

(
p
1/2
n

K1/2

)
∑

i∈[n] Piiε
2
i

K
−
∑

i∈[n] Piiϑ
2
i

K
= Op

(
p
1/2
n

K1/2

)
(A.16)

which follows from

E

(∑
i∈[n] Pii(ẽ

2
i − ϑ2i )

K

)2

=

∑
i∈[n] P

2
iiE(ẽ

2
i − ϑ2i )

2

K2
≤
Cpn

∑
i∈[n] Pii

K2
=
Cpn
K

Then define Jn :=
Qẽ,ẽ√
K

and Jn :=
Qε,ε√
K
. By repeating the proof of step 3, we can show that there

exists a random variable J ′
n

d
= Jn such that

Jn = J ′
n +Op(

p
1/2
n

K
). (A.17)

Putting everything together, we have

e′Pe

K
= Jn +

(∑
i∈[n] Piiẽ

2
i

K
−
∑

i∈[n] Piiϑ
2
i

K

)
+

∑
i∈[n] Piiϑ

2
i

K

(i)
= J ′

n +

∑
i∈[n] Piiϑ

2
i

K
+Op

(
p
1/2
n

K1/2

)
d
= Jn +

∑
i∈[n] Piiϑ

2
i

K
+Op

(
p
1/2
n

K1/2

)

=
E ′PE
K

−

(∑
i∈[n] Piiϑ

2
i

K
−
∑

i∈[n] Piiε
2
i

K

)
+Op

(
p
1/2
n

K1/2

)

=
E ′PE
K

+Op

(
p
1/2
n

K1/2

)

where (i) follows from (A.16) and (A.17). This completes the proof of the second part of Theorem
1.

A.2 Proof of Theorem 2

Consider any sub-sequence λnk
∈ Λnk

. We will show that for both fixed and diverging K,

lim
nk→∞

Pλnk

(
Q̂(β0) > q1−α(Fw̃)

)
= α. (A.18)

Then (A.18) satisfies Assumption B* of Andrews, Cheng, and Guggenberger (2020). By Corol-
lary 2.1(c) of their paper, Theorem 2 follows. Without loss of generality, we implicitly consider
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the sequence λn ∈ Λn and show that it satisfies (A.18). We deal with each case (fixed or diverging)
separately.

Fixed K case: Consider first when K is fixed. We can write the rejection criteria (2.7) as

Q̂(β0) > q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1

 (A.19)

We denote Q(β0) as Qn(β0) to reflect its relationship to the sample size n. Under the null,
by Theorem D.2.1 and Lemma B.3, we know that for any sub-sequence nj , there exists a further
sub-sequence njk such that

Q̂njk
(β0)⇝

∑
i∈[K]

w∗
i χ

2
1,i =: χ2

w∗ (A.20)

where the chi-squares are independent with one degree of freedom. Furthermore, Fw̃njk
⇝ χ2

w∗

since w̃njk

p→ w∗ by Lemma B.3. By arguing along sub-sequences, we can assume without loss of

generality that the above convergence is in terms of a full sequence, i.e. w̃n
p→ w∗ and wn → w∗.

Furthermore, note that

(a) ||wn||2F · (
∑
i∈[n]

Piiσ
2
i )

2 = trace(U ′ΛUU ′ΛU) =
∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i σ

2
j

(b)
∑
i∈[n]

P 2
iiσ

2
i ≤ CpnK = o(1)

(c) Φ̂1
(i)
= Φ1 + op(1)

(ii)
=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i σ̃

2
j + op(1)

(iii)
=

2

K

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i σ

2
j + op(1)

(d)
1

K

∑
i∈[n]

Piie
2
i
(iv)
=

1

K

∑
i∈[n]

Piiσ
2
i + op(1)

where (i) follows from our assumption of consistent estimator; (ii) from the second part of Theorem
C.0.1; (iii) follows from (b); (iv) follows from Lemma B.1. Then from (d) we have

(e)

1√
K

∑
i∈[n] Piiσ

2
i

1√
K

∑
i∈[n] Piie2i

=

1
K

∑
i∈[n] Piiσ

2
i

1
K

∑
i∈[n] Piie2i

=

1
K

∑
i∈[n] Piiσ

2
i

1
K

∑
i∈[n] Piiσ2i + op(1)

p→ 1,

and from (c) we have

(f)

√
Φ̂1√

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

=

√√√√ 2
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j + op(1)

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

=
√
2 + op(1)
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Putting it together,√
Φ̂1

1√
K

∑
i∈[n] Piie2i

=

√
1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

1√
K

∑
i∈[n] Piiσ2i

·
1√
K

∑
i∈[n] Piiσ

2
i

1√
K

∑
i∈[n] Piie2i

·

√
Φ̂1√

1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

(e),(f)
=

√
1
K

∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j

1√
K

∑
i∈[n] Piiσ2i

(1 + op(1))(
√
2 + op(1)) =

√
2

√∑
i∈[n]

∑
j∈[n] P

2
ijσ

2
i σ

2
j∑

i∈[n] Piiσ2i
+ op(1)

(a)
=

√
2||wn||+ op(1) =

√
2||w∗||+ op(1),

so that since w̃n
p→ w∗ and wn → w∗,

√
Φ̂1

1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n

p→
√
2||w∗||√
2||w∗||

= 1

Therefore,

(q1−α(Fw̃)− 1)


√

Φ̂1
1√
K

∑
i∈[n] Piie2i√

2
∑

i∈[K] w̃
2
i,n

− 1

 = (q1−α(Fw∗)− 1 + op(1))op(1) = op(1),

so we can write (A.19) as

q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1

⇝ q1−α(χ
2
w∗)

By Van der Vaart and Wellner (1996)[Example 1.4.7],Q̂(β0), q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1


⇝ (χ2

w∗ , q1−α(χ
2
w∗)),

from which an application of Theorem 1.3.6 yields

Q̂(β0)− q1−α(Fw̃n
)− (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1

⇝ χ2
w∗ − q1−α(χ

2
w∗);
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applying Theorem 1.3.4(vi) yields

lim
n→∞

Pλn

Q̂(β0)− q1−α(Fw̃n
)− (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1

 > 0


= P

(
χ2
w∗ > q1−α(χ

2
w∗)
)
= α

We have therefore shown that for fixed K, (A.18) is satisfied.

Diverging K: assume now that K → ∞. By Theorem D.1.2 we have

1√
K

∑
i∈[n] Piie

2
i√

Φ̂1

(
Q̂(β0)− 1

)
⇝ N (0, 1) (A.21)

Next, define I := σ ({w̃i,n}ni=1)n≥1 to be the sigma-field generated by the sequence of random

variables w̃i,n and s2n := 2
∑

i∈[K] w̃
2
i,n. Conditioning on I, we have

V ar(Fw̃n
− 1 | I) = E

∑
i∈[K]

w̃i,n(χ
2
1,i − 1)

 = s2n. (A.22)

Additionally, we have

lim
K→∞

Cmaxi w̃
2
i,n∑

i∈[n] w̃
2
i,n

= 0. (A.23)

To see (A.23), note that maxi w̃i,n = op(1) by Lemma B.3. Furthermore,
∑

i∈[K] w̃i,n = 1 by
construction. Let maxi w̃i,n = θ0 for some 0 < θ0 < 1. Denote i∗ to be the index such that
w̃i∗,n = maxi w̃i,n. As

∑
i ̸=i∗ w̃i,n = 1− θ0, we have

∑
i∈[n]

w̃2
i,n =

∑
i ̸=i∗

w̃2
i,n + w̃2

i∗,n =
∑
i ̸=i∗

w̃2
i,n + θ20 ≥

∑
i ̸=i∗

(
1− θ0
K − 1

)2 + θ20 =
(1− θ0)

2

K − 1
+ θ20,

so that

maxi w̃
2
i,n∑

i∈[n] w̃
2
i,n

=
θ20∑

i∈[n] w̃
2
i,n

≤ θ20

θ20 +
(1−θ0)2

K−1

=
1

1 + (1−θ0)2

θ20(K−1)

= o(1),

where the last equality follows from recalling Lemma B.3, i.e. θ20 = maxi w̃
2
i,n = op(K

−1), so that

(1− θ0)
2

θ20(K − 1)
=

1 + o(1)

θ20(K − 1)
=

1 + o(1)

o(1)
→ ∞
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Thus, by (A.23) we can obtain

lim
K→∞

1

s4n

∑
i∈[K]

E(w̃i,n(χ
2
1,i − 1))4 ≤ lim

K→∞

C
∑

i∈[n] w̃
4
i,n

s4n
≤ lim

K→∞

Cmaxi w̃
2
i,n

∑
i∈[n] w̃

2
i,n

(
∑

i∈[K] w̃
2
i,n)

2

= lim
K→∞

Cmaxi w̃
2
i,n∑

i∈[K] w̃
2
i,n

= 0. (A.24)

Since the Lyapunov condition (A.22) and (A.24) is satisfied, by the Lyapunov Central Limit The-
orem, conditional on I we have

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

⇝ N (0, 1). (A.25)

Since the distributional convergence in (A.25) holds for any sequence w̃i,n, then it must hold
unconditionally by Lemma B.4. Hence, asymptotically, by (A.21) we have exact α-level size control
whenever

1√
K

∑
i∈[n] Piie

2
i√

Φ̂1

(
Q̂(β0)− 1

)
> q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n


We can rearrange this rejection criteria as

Q̂(β0) > 1 +

√
Φ̂1

1√
K

∑
i∈[n] Piie2i

· q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

 ≡ Cα

implying that we have exact asymptotic size control for K → ∞. By an application of Van der
Vaart and Wellner (1996)[Example 1.4.7, Theorem 1.3.6, Theorem 1.3.4(vi)], as was done previously
for the fixed K case, we have (A.18). The proof is complete.

A.3 Proof of Theorem 3

Note that (A.25) holds for any sequence of ∆n → ∆ not necessarily zero, i.e.

Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

⇝ N (0, 1) (A.26)

Furthermore, our rejection criteria for the test under diverging K can be rewritten as

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
>

√
Φ̂1(β0) · q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n

 (A.27)
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By (2.9), noting that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) ≤

C

K

∑
i,j∈[n]

P 2
ij = C = O(1),

the estimator Φ̂1(β0) = Op(1). Therefore the right-hand-side of (A.27) is an Op(1) term. By
Theorem D.1.2, the left-hand-side (A.27) diverges to infinity as C → ∞ and ∆ ̸= 0 is fixed. The
result thus follow.

A.4 Proof of Theorem 4

By Theorem D.1.2,

1√
KΦ1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1)⇝ N

(
∆2C√
Φ1(β0)

, 1

)

Therefore, by (A.26), for fixed ∆ and any estimator Φ̂1(β0)
p→ Φ1(β0).

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= lim

n→∞
P

 1√
KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n


= 1− F

q1−α(N (0, 1))− ∆2C√
Φ̂1(β0)


= 1− F

(
q1−α(N (0, 1))− ∆2C√

Φ1(β0)

)

Noting that ∆ = ∆̃ and C = C̃ completes the first part of the proof. Next, we show that

Φ̂standard
1 (β0)

p→ Φ1(β0), (A.28)

Φ̂cf
1 (β0)

p→ Φ1(β0). (A.29)

in order to complete the second part of the proof. Recall from section 2.4 that

Dstandard(∆) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(2∆

2Π2
jσ

2
i (β0) + ∆4Π2

iΠ
2
j ) → 0

by the assumption that Π′Π
K → 0, σ2i (β0) < C and

∑
j∈[n] P

2
ij = Pii ≤ 1. By (2.9) we have (A.28).

Furthermore, by Π′MΠ ≤ Π′Π
K → 0, (A.29) follows from Mikusheva and Sun (2022)[Theorem 3].
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A.5 Proof of Theorem 5

Note that Φ̂1(β0)
p→ Φ1(β0) by (2.9) and ∆ → 0. Furthermore, ∆2C√

Φ̂1(β0)
= ∆̃2C̃√

Φ1(β0)
+o(1) = ∆̃2C̃√

Φ1(β0)
,

so that by Theorem D.1.2 we have

1√
KΦ1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1)⇝ N

(
∆̃2C̃

Φ1/2(β0)
, 1

)

Finally, by (A.26) we have

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= lim

n→∞
P

 1√
KΦ̂1(β0)

∑
i∈[n]

Piie
2
i (β0)(Q̂(β0)− 1) > q1−α

 Fw̃n
− 1√

2
∑

i∈[K] w̃
2
i,n


= 1− F

(
q1−α(N (0, 1))− ∆̃2C̃

Φ1/2(β0)

)

A.6 Proof of Lemma 4.1

The proof is similar to the proof of Theorem 2. For completeness we will include the proof here.
Note that

(a) ||wn||2F · (
∑
i∈[n]

Piiσ
2
i (β0))

2 =
∑

i,j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0)

(b)
∑
i∈[n]

P 2
iiσ

2
i (β0) ≤ CpnK = o(1)

(c) Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) +D(∆) by assumption of (2.9)

Hence √
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

(i)
=

√
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0) +Op(1)

1√
K

∑
i∈[n] Piiσ2i (β0) +Op(1)

+ op(1)

(a),(b)
=

√
2||wn||F +Op(1) ≤

√
2||Dn + ΛH ||F +

√
2||ΛH ||F +Op(1)

(ii)
=

√
2||Dn + ΛH ||F +Op(1)

where (i) follows from (c) and Lemma B.1; ΛH is defined in Lemma B.3; (ii) follows from ||ΛH ||2F =

||ΩH(β0)||2F =
∆4

∑
i,j∈[n] P

2
ijΠ

2
iΠ

2
j∑

i∈[K] Piiσ2
i (β0)

≤ ∆4CK
CK ≤ C. Furthermore, we have by Lemma B.3

||Dw̃n
−Dn − ΛH ||F = op(1)
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where Dw̃n
:= diag(w̃1,n, ..., w̃K,n), so that

||w̃n||F = ||(Dw̃n
−Dn − ΛH) + ΛH +Dn||F = ||ΛH +Dn||F + op(1)

Putting it together we have

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

=

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

√
2||w̃n||F

≤
√
2||Dn + ΛH ||F +Op(1)√

2||w̃n||F

=

√
2||Dn + ΛH ||F +Op(1)√
2||ΛH +Dn||F + op(1)

p→ 1 +Op(1) = Op(1)

which completes the proof.

A.7 Proof of Lemma 4.2

We require a Theorem by Fleiss (1971):

Theorem 9. (Fleiss (1971)) Let {χ2
ni,i

}Ki=1 be a sequence of mutually independent chi-squares with
ni-degrees of freedom. Define

Ti :=
χ2
ni,i∑K

i=1 χ
2
ni,i

to be the ratio of chi-squares. Then for any non-negative constants a1, .., aK , conditional on {Ti}Ki=1,∑
i∈[p]

aiχ
2
ni,i

d
= c1 · χ2∑

i∈[K] ni

where c1 :=
∑

i∈[K] aiTi

We denote Fℓ :=
{
w ∈ Ω : Tℓ = minℓ∈[K]Tℓ

}
for every ℓ ∈ [K]; furthermore P(

⋃
ℓ∈[K]Fℓ) = 1

and P(
⋂

ℓ∈[K]Fℓ) = 0. Then for any chosen non-negative (a1, ..., aK) such that
∑

ℓ∈[K] aℓ = 1 and
for any x ∈ R+, we have

P
(
χ2
1,1 ≤ x ∩ F1|{Tℓ}ℓ∈[K]

)
= E

(
1χ2

1,1≤x1F1 |{Tℓ}ℓ∈[K]

)
= 1F1P

(
χ2
1,1 ≤ x|{Tℓ}ℓ∈[K]

)
(i)
= 1F1P

(
T1χ

2
K ≤ x

) (ii)

≤ 1F1P

∑
ℓ∈[K]

aℓTℓ · χ2
K ≤ x


(iii)
= 1F1P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x|{Tℓ}ℓ∈[K]

 = P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ F1|{Tℓ}ℓ∈[K]


where (i) and (iii) follows from Theorem 9; (ii) follows from the fact that whenever ω ∈ F1,
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T1 ≤
∑

ℓ∈[K] aℓTℓ since
∑

ℓ∈[K] aℓ = 1. Taking expectation on both sides of the equation yield

P
(
χ2
1,1 ≤ x ∩ F1

)
≤ P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ F1

 .

Note that {Fℓ}ℓ∈[K] are mutually disjoint except on a null set. Therefore

P(χ2
1,1 ≤ x)

(iii)

≤
∑
i∈[K]

P
(
χ2
1,i ≤ x ∩ Fi

)
≤
∑
i∈[K]

P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x ∩ Fi

 = P

∑
ℓ∈[K]

aℓχ
2
1,ℓ ≤ x


where (iii) follows from 1Fiχ

2
1,i ≤ 1Fiχ

2
1,1 and

P(χ2
1,1 ≤ x) =

∑
i∈[K]

P
(
χ2
1,1 ≤ x ∩ Fi

)
≤
∑
i∈[K]

P
(
χ2
1,i ≤ x ∩ Fi

)
.

Hence we can conclude that the distribution function of a chi-square is smaller than that of a
weighted-chi-square. This implies that

q1−α(χ
2
1) ≥ q1−α(

∑
ℓ∈[K]

aℓχ
2
1,ℓ)

A.8 Proof of Theorem 6

We begin by establishing some results: we will show later on that for any sequence of ∆n → ∆†

with ∆† finite,

n−1/2((Z ′ẽ)′, (Z ′∆nṽ)
′)′ ⇝ N

(
0,Σ(∆†)

)
(A.30)

where Σ(∆†) := limn→∞
1
n

∑
i∈[n] Λ0,i(∆n)⊗ZiZ

′
i. Furthermore, β0 := β0,n (since ∆n is allowed to

change) so that β0 is allowed to change with n; however we drop the notational dependence on n
and understand that this implicitly holds. Then we can obtain

e(β0)
′Pe(β0)

= (n−1/2Z ′ẽ+∆nn
−1/2Z ′ṽ +∆nn

−1/2Z ′Π)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+∆nn
−1/2Z ′ṽ +∆nn

−1/2Z ′Π)

⇝ ((IK , IK)N (0,Σ(∆†)) + ∆†µK)′Q−1
ZZ((IK , IK)N (0,Σ(∆†)) + ∆†µK) (A.31)

Furthermore, note that ∑
i∈[n]

Piie
2
i (β0)

−1

≥ C(1 + ∆† +∆†2)−1 + op(1) (A.32)
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for some C > 0. To see (A.32), first denote σ2i (∆
†) := σ2i (β̃0), where ∆† = β − β̃0. Then observe

that ∑
i∈[n]

Piie
2
i (β0))

(i)
=

1

K

∑
i∈[n]

Piiσ
2
i (β0) +

∆2
n

K

∑
i∈[n]

PiiΠ
2
i + op(1 + ∆n)

(ii)

≤ 1

K

∑
i∈[n]

Piiσ
2
i (β0) + ∆2

nmax
i

Π2
i + op(1 + ∆n)

(iii)

≤ C(1 + ∆n) + C∆2
n + op(1 + ∆n)

≤ C(1 + ∆n +∆2
n) + op(1 + ∆n)

(iv)
= C(1 + ∆† +∆†2) + op(1)

where (i) follows from Lemma B.1; (ii) follows from
∑

i∈[n] Pii = K; (iii) follows from maxi σ
2
i (β0) ≤

maxi(σ̃
2
i +∆2

nζ̃
2
i + 2∆nγ̃i) ≤ C(1 + ∆n) and maxiΠ

2
i ≤ Π′Π ≤ C; for (iv), note that op(1 + ∆n)−

op(1 + ∆†) = op(1); hence (A.32) is shown. To show (A.31), note that by assumption 4 we have

1

n

∑
i∈[n]

E
(
((Ziẽi)

′, (∆nZiṽi)
′)′((Ziẽi)

′, (∆nZiṽi)
′)
)
=

1

n

∑
i∈[n]

Λ0,i(∆n)⊗ ZiZ
′
i → Σ(∆†).

Furthermore, for every η > 0

1

n

∑
i∈[n]

E
{
||(Ziẽi,∆nZiṽi)||2F 1{||(Ziẽi,∆nZiṽi)||F ≥ η

√
n}
}
→ 0.

The preceding equation follows from{
E
{
||(Ziẽi,∆nZiṽi)||2F 1{||(Ziẽi,∆nZiṽi)||F ≥ η

√
n}
}}2

(i)

≤ E||(Ziẽi,∆nZiṽi)||4F · P
(
n−1/2||(Ziẽi,∆nZiṽi)|| ≥ η

)
(ii)

≤ C(1 + ∆†2)P
(
n−1/2||(Ziẽi,∆nZiṽi)||F ≥ η

)
+ o(1)

(iii)

≤ C(1 + ∆†2)
||Zi||2FE(ẽ2i +∆nṽ

2
i )

η2n
≤ C(1 + ∆n)

2

n
=
C(1 + ∆†)2

n
+ o(1)

where (i) follows from Cauchy-Schwartz inequality and (ii) follows from supi E||(Ziẽi,∆nZiṽi)||4F ≤
2 supi ||Zi||4F · E(ẽ4i +∆2

nṽ
4
i ) ≤ C(1 + ∆2

n) ≤ C(1 + ∆†2) + o(1) < ∞, by assumption 2 and 4; (iii)
follows from Markov-inequality. We can then apply the Lindeberg-Feller Central-Limit-Theorem
to obtain (A.31). We are now ready to prove our result.

Let ∆n = ∆† = ∆. Then

(IK , IK)N (0,Σ) +∆µK = d−1
n (dn(IK , IK)N (0,Σ) +∆dnµK) = d−1

n (op(1) + ∆dnµK) ,
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so that WPA1,

(op(1) + ∆dnµK)′Q−1
ZZ(op(1) + ∆dnµK) ≥ mineig(Q−1

ZZ) ·∆
2d2nµ

′
KµK

= mineig(Q−1
ZZ) ·∆

2d2nµ̃
2
n = mineig(Q−1

ZZ) ·∆
2µ̃2 > 0.

Therefore, WPA1, the last line of (A.31) diverges to ∞, as d−1
n → ∞. By (A.31) and (A.32) we

have

Q̂(β0) ≥ Ce(β0)
′Pe(β0) + op(1) → ∞.

Furthermore, by lemma 4.2 we know that q1−α(Fw̃n
) = Op(1); by lemma 4.1 and (A.19), we have

P
(
Q̂(β0) > Cα

)
= P

Q̂(β0) > q1−α(Fw̃n
) + (q1−α(Fw̃n

)− 1)


√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

− 1




= P
(
Q̂(β0) > Op(1)

)
= 1

A.9 Proof of Theorem 7

Note that we have dnµK = µ̃ and ∆ = ∆n = dn∆̃ → 0. Then by (A.30), ∆nn
−1/2Z ′ṽ = op(1),

whence

e(β0)
′Pe(β0) = (n−1/2Z ′ẽ+∆nn

−1/2Z ′Π)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+∆nn
−1/2Z ′Π) + op(1)

= (n−1/2Z ′ẽ+ ∆̃µ̃)′
(
Z ′Z

n

)−1

(n−1/2Z ′ẽ+ ∆̃µ̃) + op(1)

Furthermore, by Lemma B.1, pn
Π′Π
K = O(1) and ∆ → 0, we have

1

K

∑
i∈[n]

Piie
2
i (β0) =

1

K

∑
i∈[n]

Piiσ
2
i (β) + op(1) =

1

K

∑
i∈[n]

Piiσ̃
2
i + op(1)

where β is the true parameter. Therefore we have

Q̂(β0) =
(n−1/2Z ′ẽ+ ∆̃µ̃)′

(
Z′Z
n

)−1
(n−1/2Z ′ẽ+ ∆̃µ̃)∑

i∈[n] Piiσ̃2i
+ op(1)

=
(
(Z ′Λ0Z)

−1/2Z ′ẽ+ (n−1Z ′Λ0Z)
−1/2∆̃µ̃

)′
Ω(β)

(
(Z ′Λ0Z)

−1/2Z ′ẽ+ (n−1Z ′Λ0Z)
−1/2∆̃µ̃

)
+ op(1)

⇝

(
N (0, IK) + Σ(0)∆̃µ̃

)′
Ω∗(β)

(
N (0, IK) + Σ(0)∆̃µ̃

)
= ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
(A.33)
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where Ω(β) is defined in (2.6) and the convergence follows from (A.30) and Ω∗(β) := limn→∞Ω(β).
Next, we deal with the critical value. If we show

w̃n
p→ w∗ and

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

p→ 1, (A.34)

then by (A.33) and (A.19) we can obtain

lim
n→∞

P
(
Q̂(β0) > Cα(Φ̂1(β0))

)
= P

(
ZK

(
Σ(0)∆̃µ̃

)′
Ω∗(β)ZK

(
Σ(0)∆̃µ̃

)
> q1−α(Fw∗)

)
,

which completes the proof. Note that by Lemma B.1, since ∆ → 0, we have

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i σ̃

2
j + op(1)

Repeating the proof of Lemma 4.1 yields√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)

=
√
2||wn||F + op(1)

By Lemma B.3 we have that

max
i∈[K]

(w̃i,n − wn)
2 = op(1)

Finally,

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

=

√
2||wn||F√
2||w̃n||F

+ op(1)
p→ 1,

so that together with the assumption that wn → w∗ (which holds as limn→∞Ω(β) → Ω∗(β)), (A.34)
is shown.

A.10 Proof of Corollary 4.1

The result is a straightforward application of Marden (1982)[Theorem 2.1], by observing that the
acceptance region A := {(a1, ..., aK) ∈ RK

+ :
∑

i∈[K] aiw
∗
i ≤ q1−α(

∑
i∈[K]w

∗
i χ

2
1,i)} is convex and

monotone decreasing in the sense that if (a1, ..., aK) ∈ A and bi ≤ ai for all i, then b ∈ A
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A.11 Proof of Theorem 8:

We begin by noting that ∆ = ∆̃ and µK = µ̃. Defining An := n−1/2Z ′ẽ+∆̃n−1/2Z ′ṽ, Vn := EAnA′
n

and Yn :=
∆̃2

∑
i∈[n] PiiΠ

2
i∑

i∈[n] Piiσ2
i (β0)

, we have

Q̂(β0)
(i)
=

(An + µ̃)′(Z
′Z
n )−1(An + µ̃)∑

i∈[n] Piiσ2i (β0) + ∆̃2
∑

i∈[n] PiiΠ2
i + op(1)

(ii)
= (V−1/2

n An + V−1/2
n µ̃)′

Z ′Λ(β0)PΛ(β0)Z∑
i∈[n] Piiσ2i (β0) + ∆̃2

∑
i∈[n] PiiΠ2

i

(V−1/2
n An + V−1/2

n µ̃) + op(1)

= (1 + Yn)
−1(V−1/2

n An + V−1/2
n µ̃)′

Z ′Λ(β0)PΛ(β0)Z∑
i∈[n] Piiσ2i (β0)

(V−1/2
n An + V−1/2

n µ̃) + op(1)

(iii)
= (1 + Yn)

−1(V−1/2
n An + V−1/2

n µ̃)′Ω(β0)(V
−1/2
n An + V−1/2

n µ̃) + op(1)

(iv)
⇝ (1 + Yn)

−1
(
N (0, IK) + Σ(∆̃)µ̃

)′
Ω∗(β0)

(
N (0, IK) + Σ(∆̃)µ̃

)
(A.35)

where (i) follows from Lemma B.1; (ii) follows by recalling that

Λ(β0) := diag
(
(σ̃21 + 2∆̃γ̃1 + ∆̃2ζ̃2i ), ..., (σ̃

2
n + 2∆̃γ̃n + ∆̃2ζ̃2n)

)
;

(iii) follows from definition (2.6); (iv) follows from (A.30). To deal with the critical-value, note
that by Lemma B.3 we have that

max
i∈[K]

(w̃i,n − wn − λHi,n)
2 = op(1)

so that

||w̃n||2F = ||wn + ΛH ||2F + op(1) = ||wn||2F +
∆̃2
∑

i∈[n] PiiΠ
2
i∑

i∈[n] Piiσ2i (β0)
+ 2w′

nΛ
H + op(1)

= ||wn||2F + Yn + 2w′
nΛ

H + op(1) (A.36)

where ΛH = (λH1,n, ..., λ
H
K,n) is defined in Lemma B.3. Furthermore,√

Φ̂1(β0)
1√
K

∑
i∈[n] Piie2i (β0)

(i)
=

√
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0) +D(∆̃)

1√
K

∑
i∈[n] Piiσ2i (β0) +

∆̃2√
K

∑
i∈[n] PiiΠ2

i

+ op(1)

(ii)
=

√
2
K

∑
i,j∈[n] P

2
ijσ

2
i (β0)σ

2
j (β0) +D(∆̃)

1√
K

∑
i∈[n] Piiσ2i (β0) +

∆̃2√
K

∑
i∈[n] PiiΠ2

i

+ op(1)

=

√
2
K

∑
i,j∈[n] P

2
ijσ

2
i (β0)σ2

j (β0)

1√
K

∑
i∈[n] Piiσ2

i (β0)
+ D(∆̃)

1√
K

∑
i∈[n] Piiσ2

i (β0)

1 +
∆̃2

∑
i∈[n] PiiΠ2

i∑
i∈[n] Piiσ2

i (β0)

+ op(1)
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(iii)
=

√
2||wn||F + D(∆̃)

1√
K

∑
i∈[n] Piiσ2

i (β0)

1 +
∆̃2

∑
i∈[n] PiiΠ2

i∑
i∈[n] Piiσ2

i (β0)

+ op(1)

where (i) follows from Lemma B.1 and (c) in the proof of Lemma 4.1; (ii) follows from (b) in the
proof of Lemma 4.1; (iii) follows from (a) in the proof of Lemma 4.1. Combining the preceding
equation with (A.36) yields

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

=
||wn||F +

√
K D(∆̃)Yn∑

i∈[n] PiiΠ2
i

(1 + Yn)
√
||wn||2F + Yn + 2w′

nΛ
H

+ op(1)
(i)
=

||w∗||F√
||w∗||F + 2w∗′ΛH

+ op(1).

(A.37)

where (i) follows from ||wn − w∗||F = o(1) and

Yn :=
∆̃2
∑

i∈[n] PiiΠ
2
i∑

i∈[n] Piiσ2i (β0)

(ii)

≤ pn
∆̃2
∑

i∈[n]Π
2
i∑

i∈[n] Pii
=

∆̃2pnΠ
′Π

K

(iii)
= o(1),

(ii) follows from σ2i (β0) ≥ C > 0 by assumption 2, (iii) follows from Π′Π = O(1) and pn
K = o(1) by

assumption 2. Furthermore, we can show that

ΛH = (n−1Z ′Z)−1/2Z
′HnZ

n
(n−1Z ′Z)−1/2 → 0, (A.38)

which follows from

λmax(
Z ′HnZ

n
) = ∆̃2λmax(

1

n

∑
i∈[n]

ZiZ
′
iΠ

2
i ) ≤

∆̃2

n

∑
i∈[n]

λmax(ZiZ
′
iΠ

2
i )

≤ ∆̃2

n

∑
i∈[n]

Π2
i ||Zi||2F

(i)

≤ C∆̃2Π
′Π

n
= o(1)

where (i) follows from supi ||Zi||F <∞ by assumption 4. Therefore, combining (A.37) and (A.38)
yields

√
Φ̂1(β0)

1√
K

∑
i∈[n] Piie2i (β0)√

2
∑

i∈[K] w̃
2
i,n

p→ 1 (A.39)

Finally, since λHi,n → 0 and maxi∈[K](w̃i,n−wn−λHi,n)2 = op(1), we have ||w̃n−wn||2F = op(1). This
implies

q1−α(Fw̃n
) = q1−α(Fwn) + op(1)

p→ q1−α(Fw∗)

In view of the preceding equation, (A.35), (A.39) and (2.8), we have Theorem 8.
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A.12 Proof of Corollary 4.2

Repeat the proof of corollary 4.1 and replace Mi by Mi for each i

B Auxiliary Lemmas

Lemma B.1. Under Assumption 1 and 2, for any fixed ∆ := β − β0 not necessarily zero,

1

K

∑
i∈[n]

Piie
2
i (β0) =

1

K

∑
i∈[n]

Piiσ
2
i (β0) +

∆2

K

∑
i∈[n]

PiiΠ
2
i + op(1),

where ∆2

K

∑
i∈[n] PiiΠ

2
i = Op(∆

2pn
Π′Π
K )

Proof of Lemma B.1:
To begin, recall

σ2i (β0) = σ̃i
2 +∆2ς̃2i + 2∆γ̃i (B.1)

Furthermore,

e2i (β0) = (ei +∆Xi)
2 = ((MW

i )′ẽ+∆Πi +∆vi)
2

= ((MW
i )′ẽ)2 + 2∆Πi(M

W
i )′ẽ+ 2∆vi(M

W
i )′ẽ+∆2Π2

i + 2∆2Πivi +∆2v2i

= Ai,1 + 2∆Ai,2 + 2∆Ai,3 +∆2Ai,4 + 2∆2Ai,5 +∆2Ai,6 (B.2)

We will show that

1

K

∑
i∈[n]

Pii(Ai,1 − σ̃2i ) = Op

(√
pn
K

+
√
pWn

)
(B.3)

1

K

∑
i∈[n]

PiiAi,2 = Op(

√
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K

), (B.4)

1

K

∑
i∈[n]

Pii(Ai,3 − γ̃i) = Op(

√
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K

+
√
pWn )), (B.5)

1
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∑
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PiiAi,4 = Op(∆
2pn

Π′Π

K
) (B.6)

1

K

∑
i∈[n]

PiiAi,5 = Op(

√
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K

+ pWn ). and (B.7)

1

K

∑
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√
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+
√
pWn ) (B.8)

Observe that

1

K

∑
i∈[n]
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Pii(ẽ
2
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ij ẽj ẽi +

1

K

∑
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Pii(
∑
j∈[n]

PW
ij ẽj)

2
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= B1 +B2 +B3

By Markov inequality and

E
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2
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we have that B1 = Op(
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K ). Since

E(B2)
2 ≤ C

K2

∑
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ij P

W
ij′ E(ẽ
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≤ CpWn (B.9)

we have B2 = Op(
√
pWn ). Also,

EB3 =
1

K

∑
i∈[n]
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∑
j∈[n]

(PW
ij )2σ̃2i ≤ C

K

∑
i∈[n]

PiiP
W
ii ≤ CpWn = O(pWn )

so that putting it all together yields (B.3). Next, we can express Ai,2 = Πiẽi − Πi(P
W
i )′ẽ ≡

Ai,2,1 +Ai,2,2. By Markov inequality,
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we obtain (B.4). For (B.5), observe that vi = ṽi −
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W
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Pii(ẽiṽi − γ̃i)−
1

K

∑
i∈[n]

Piiṽi
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Note B5 = Op(
√
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K ) and B6 = Op(

√
pWn ) by
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and
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as in (B.9); the argument for B7 = Op(
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pWn ) is analogous to B6. Furthermore, by
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W
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Finally we deal with (B.8). Since v2i = ṽ2i − 2
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W
ij ṽiṽj + (

∑
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W
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2, we have
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√

pn
K ) by
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2
i − ς̃2i )

2

≤ C

K2

∑
i∈[n]

P 2
ii = O(

pn
K

).

Furthermore, similar to (B.9) we have

EB2
10 ≤ CpWn = O(pWn )
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and

EB11 ≤
C

K

∑
i∈[n]
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∑
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ij )2 ≤ CpWn = O(pWn )

This completes the proof of (B.8). By the assumption of pn
K = o(1) and pWn = o(1), each term from

(B.3)-(B.8) except (B.6) is op(1). Hence Lemma B.1 is shown.

Lemma B.2. Suppose Assumption 1 and 2 holds. Then for fixed ∆ not necessarily zero,
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Proof of Lemma B.2:
Step 1: We first show that

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
iσ

2
j (β0) =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i σ

2
j (β0) + op(1) (B.10)

Note σ2i = σ̃2i , so we can express
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ẽ2i − σ̃2i

)
− 2

∑
j∈[n]

PW
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We will show that 1
K2Bℓ,ℓ′ = o(1) for each ℓ, ℓ′ ∈ {1, 2, 3}, which will complete the proof by Markov

inequality. First,
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where the inequality is from
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Sixth,
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Seventh, the proof that 1
KB3,1 = op(1) is analogous to that of 1
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The proof of (B.10) is complete.

Step 2: We complete the proof.
Note that we can write ei(β0) = e2i +∆2(Π2

i + v2i + 2Πivi) + 2∆viei + 2∆Πiei, so
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Finally, we will show that
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We will only show (B.14) since (B.15) follows the same proof. By the inequality (a+b)2 ≤ 2a2+2b2
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2

≡ A1 +A2
(i)
= o(1),

where (i) follows from

A1 ≤
C

K2

∑
i,j,j′∈[n]

P 2
ijP

2
ij′ ≤

Cpn
K

= o(1)

and

A2 ≤
C

K2

∑
i,i′,j,j′

P 2
ijP

2
i′j′

∑
ℓ∈[n]

|PW
iℓ P

W
i′ℓ |

(ii)

≤ CpWn
K2

∑
i,i′,j,j′

P 2
ijP

2
i′j′ = CpWn = o(1)

where (ii) follows from Cauchy-Schwartz inequality. Therefore, by Markov inequality we have
(B.14). Combining (B.10)-(B.15) yields Lemma B.2

Lemma B.3. Suppose Assumption 1, 2 and 3 holds. Fix any ∆ not necessarily zero. For either
fixed or diverging K, consider any sub-sequence nj ⊂ n. Then there exists a further sub-sequence
njk ⊂ nj such that

max
i∈[K]

(w̃i,njk
− wi,njk

− λHi,njk
)2 = op(1)

where ΛH = (λH1,n, ..., λ
H
K,n) are the eigenvalues of ΩH(β0) :=

U ′HnU∑
i∈[n] Piiσ2

i (β0)
, Hn := diag(T1,n, ..., Tn,n)

and Ti,n := ∆2Π2
i . Furthermore,

(i) for K → ∞, maxi w̃i,n = o(K−1/2);
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(ii) for fixed K, if wn converges to a limit under the full-sequence (i.e. ||wn − w∗||F = o(1)), then

max
i∈[K]

(w̃i,n − wi,n − λHi,n)
2 = op(1)

Proof of Lemma B.3:
For notational simplicity, we abuse notation and write Ti ≡ Ti,n. Furthermore, we write Λ̂(β0) and

Λ(β0) as Λ̂ and Λ respectively. Note that for both fixed and diverging K, we have

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Tj) = op(1) (B.16)

where the last equality follows from

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Ti) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)(e

2
j (β0)− Tj)

+
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0)−

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0)−

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
j (β0)− Tj)σ

2
i (β0)

(i)
= 2Φ1 −

4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0) + op(1)

(ii)
= 2Φ1 − 2Φ1 + op(1) = op(1)

where (i) follows from noting that by repeating the proof of Theorem C.0.1 will show that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)(e

2
j (β0)− Tj) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) + op(1) = Φ1 + op(1);

(ii) follows from noting that by repeating the proof of Step 2 in Lemma B.2, we can show in a
similar manner that

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− Ti)σ

2
j (β0) = Φ1 + op(1).

Fixed K case: Assume first that K is fixed. Then we have

1

K

∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Tj)

=
1

K

∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Tj)

+
1

K

∑
i∈[n]

P 2
iiE(e

2
i (β0)− σ2i (β0)− Ti)

2 = op(1)
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where the last equality follows from (B.16) and

1

K

∑
i∈[n]

P 2
iiE(e

2
i (β0)− σ2i (β0))

2 ≤ C

K

∑
i∈[n]

P 2
ii ≤ Cpn =

pn
K
K = o(1)

for fixed K. Therefore

||U ′Λ̂U − U ′ΛU − U ′HnU ||2F = E||U ′(Λ̂− Λ−Hn)U ||2F
= Etrace(U ′(Λ̂− Λ−Hn)UU

′(Λ̂− Λ−Hn)U)

= trace

(Z ′Z)−1/2
∑
i∈[n]

ZiZ
′
i(e

2
i (β0)− σ2i (β0)− Ti)(Z

′Z)−1
∑
j∈[n]

ZiZ
′
i(e

2
j (β0)− σ2j (β0)− Tj)(Z

′Z)−1/2


=
∑
i∈[n]

∑
j∈[n]

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Tj) = op(1),

which gives us

||U ′Λ̂U − U ′ΛU − U ′HnU ||F = op(1) (B.17)

Then we have

||Ω̂s,n(β0)− Ωs,n(β0)− ΩH(β0)||2F =

∣∣∣∣∣
∣∣∣∣∣
∑

i∈[n] Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n] Piie

2
i (β0)U

′ΛU∑
i∈[n] Piie2i (β0) ·

∑
i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

F

=
1/K2(

1
K

∑
i∈[n] Piie2i (β0) ·

1
K

∑
i∈[n] Piiσ2i (β0)

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n]

Piie
2
i (β0))U

′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(i)
=

1/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂−Hn)U −

∑
i∈[n]

Piie
2
i (β0)U

′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(ii)

≤ 2/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Piiσ
2
i (β0) · U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

+
2/K2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[n]

Pii(e
2
i (β0)− σ2i (β0)) · U ′ΛU

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

≤ 2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Piiσ
2
i (β0)

∣∣∣∣∣∣∣∣2
F

·
∣∣∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣∣∣2
F

+
2

( 1
K

∑
i∈[n] Piiσ2i (β0))

4 + op(1)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Pii(e
2
i (β0)− σ2i (β0))

∣∣∣∣∣∣∣∣2
F

·
∣∣∣∣∣∣∣∣U ′ΛU

∣∣∣∣∣∣∣∣2
F

(iii)
= op(1)

64



where (i) follows from Lemma B.1; (ii) follows from (a+ b)2 ≤ 2a2 + 2b2; (iii) follows from

(a)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Piiσ
2
i (β0)

∣∣∣∣∣∣∣∣2
F

≤
∣∣∣∣∣∣∣∣max

i
σ2i (β0)

∣∣∣∣∣∣∣∣2
F

≤ max
i

(σ2i +∆2ς2i + 2∆γi) = O(1)

(b)

∣∣∣∣∣∣∣∣ 1K ∑
i∈[n]

Pii{e2i (β0)− σ2i (β0)}
∣∣∣∣∣∣∣∣2
F

= ||op(1)||2F = op(1) by Lemma B.1

(c)

∣∣∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣∣∣2
F

= op(1) by (B.17)

(d)

∣∣∣∣∣∣∣∣U ′ΛU

∣∣∣∣∣∣∣∣2
F

=
∑
i∈[n]

Piiσ
2
i = O(K) = O(1)

(e)
1

1
K

∑
i∈[n] Piiσ2i (β0)

≤ 1
C
K

∑
i∈[n] Pii

=
1

C
= O(1).

Note that

||Ωs,n(β0)||2F =
1

(
∑

i∈[n] Piiσ2i (β0))
2
||U ′ΛU ||2F =

1

(
∑

i∈[n] Piiσ2i (β0))
2

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0)

≤ 1

C1

∑
i∈[n]

∑
j∈[n]

P 2
ijσ

2
i (β0)σ

2
j (β0) = O(1).

therefore, by Bolzano-Weierstrass Theorem, for every sub-sequence nj there exists a further sub-
sequence njk such that Ωs,njk

(β0) → Ω∗(β0). Let w∗ to be the eigenvalues of Ω∗(β0), so that
w∗
i ≥ 0 and

∑
i∈K w∗

i = 1. By continuous mapping theorem, wi,njk
→ w∗

i for each i ∈ [K]. By

||Ω̂s,n(β0)− Ωs,n(β0)− ΩH(β0)||2F = op(1) and ||Ωs,njk
(β0)− Ω∗(β0)||2F = o(1), we know

||Ω̂s,njk
(β0)− Ω∗(β0)− ΩH(β0)||2F = op(1)

Given that w̃n are the eigenvalues of Ω̂s,n(β0), by continuous mapping theorem w̃njk
− λHnjk

p→ w∗.

Clearly this means that maxi∈[K](w̃i,njk
− wi,njk

− λHi,njk
)2 = op(1). This concludes the proof for

fixed K.

Diverging K case: Assume now that K → ∞.
Note first that

1
1
K

∑
i∈[n] Piiσ2i (β0)

≤ 1
C
K

∑
i∈[n] Pii

=
1

C
≤ C.

We will show that22

max
i
w̃i,n = op(K

−1/2) = op(1) (B.18)

22The reason we show that maxi w̃i,n = op(K
−1/2) instead of showing op(1) immediately is that we will be using

this property in the proof of Theorem 2 later on
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To this end, denote || · ||S as the spectral-norm. Observe that

max
i
wi,n = ||Ωs(β0)||S =

1∑
i∈[n] Piiσ2i (β0)

||U ′ΛU ||S ≤ 1∑
i∈[n] Piiσ2i (β0)

||U ||2S ||Λ||S

(i)
=

1∑
i∈[n] Piiσ2i (β0)

||Λ||S =
maxi σ

2
i (β0)∑

i∈[n] Piiσ2i (β0)

(ii)

≤ C/K
1
K

∑
i∈[n] Piiσ2i (β0)

= o(K−1/2) (B.19)

where (i) follows by U ′U = IK ; (ii) follows from expression (B.1). Furthermore, we have

max
i
λHi,n = ||ΩH(β0)||S =

||U ′HnU ||S∑
i∈[n] Piiσ2i (β0)

≤ ||Hn||S
KC

=
maxi∆

2Π2
i

KC
≤ C

K
= o(K−1/2) (B.20)

Next, we can orthogonally diagonalize Ωs(β0) = Q′
1DwQ1, Ω̂s(β0) = Q′

2Dw̃Q2 and ΩH(β0) =
Q′

3ΛHQ3, where Dw̃ = diag(w̃1,n, ..., w̃K,n), Dw = diag(w1,n, ..., wK,n); Q
′
1Q1 = Q′

1Q1 = IK =
Q′

2Q2 = Q2Q
′
2 = Q′

3Q3 = Q3Q
′
3. Then

max
i∈[n]

(w̃i,n − wi,n − λHi,n)
2 = ||Dw̃ −Dw − ΛH ||2S

(i)
= ||Ω̂s(β0)−A′Ωs(β0)A− B′ΩH(β0)B||2S

≤
(
||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||S + ||Ωs(β0)−A′Ωs(β0)A+ΩH(β0)− B′ΩH(β0)B||S

)2
(ii)

≤ 4||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S + 4||Ωs(β0)−A′Ωs(β0)A||2S + 4||ΩH(β0)− B′ΩH(β0)B||2S
(iii)

≤ 4||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S + o(K−1) (B.21)

where (i) follows from A′ := Q′
1Q2 and B′ := Q′

1Q3; (ii) follows from the simple inequality (a+b)2 ≤
2a2 + 2b2; the first part of (iii) follows from

4||Ωs(β0)−A′Ωs(β0)A||2S ≤ 8||Ωs(β0)||2S + 8||A′Ωs(β0)A||2S
(iv)

≤ 16||Ωs(β0)||2S
(v)
= o(K−1)

with (iv) following from A′A = IK and (v) following in the same manner as (B.19). The second
part of (iii) follows from

4||ΩH(β0)− B′ΩH(β0)B||2S ≤ 16||ΩH(β0)||2S ≤
||U ||2S ||Hn||2S

(
∑

i∈[K] Piiσ2i (β0))
2
≤

||Hn||2S
K2C2 ≤ C

K2
= o(K−1).

Next, we can express

||Ω̂s(β0)− Ωs(β0)− ΩH(β0)||2S =

∣∣∣∣∣
∣∣∣∣∣ U ′Λ̂U∑

i∈[n] Piie2i (β0)
− U ′(Λ−Hn)U∑

i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

≤ 2

∣∣∣∣∣
∣∣∣∣∣U ′(Λ̂− Λ−Hn)U∑

i∈[n] Piie2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

+ 2

∣∣∣∣∣
∣∣∣∣∣ U ′(Λ−Hn)U∑

i∈[n] Piie2i (β0)
− U ′(Λ−Hn)U∑

i∈[n] Piiσ2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

≤ 2

∣∣∣∣∣
∣∣∣∣∣U ′(Λ̂− Λ−Hn)U∑

i∈[n] Piie2i (β0)

∣∣∣∣∣
∣∣∣∣∣
2

S

+
2(
∑

i∈[n] Piie
2
i (β0)−

∑
i∈[n] Piiσ

2
i (β0))

2 · ||U ′(Λ−Hn)U ||2S(∑
i∈[n] Piie2i (β0) ·

∑
i∈[n] Piiσ2i (β0)

)2
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(i)
=

2||U ′(Λ̂− Λ−Hn)U ||2S
(
∑

i∈[n] Piie2i (β0))
2

+ o(K−2) (B.22)

where (i) follows from Lemma B.1 and ||U ′(Λ−Hn)U ||2S ≤ ||Λ−Hn||2S = maxi(σ
2
i (β0)−∆2Π2

i )
2 ≤ C,

in the same manner as in (B.19). We now separate the problem into two cases now to consider:
(A) K

n = o(1) and (B) K
n → c∗ > 023. Suppose for the moment that we are under case (A). Then∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U
∣∣∣∣∣∣2
S
≤
∣∣∣∣∣∣U ′(Λ̂− Λ−Hn)U

∣∣∣∣∣∣2
F

=
∑
i∈[n]

∑
j ̸=i

P 2
ij(e

2
i (β0)− σ2i (β0)− Ti)(e

2
j (β0)− σ2j (β0)− Tj) +

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2

(ii)
= o(K) +

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2 (iii)
= o(K)

where (ii) follows from (B.16) and (iii) follows from

E

 1

K

∑
i∈[n]

P 2
ii(e

2
i (β0)− σ2i (β0)− Ti)

2

 ≤ C
1

K

∑
i∈[n]

P 2
ii ≤ Cpn

1

K

∑
i∈[n]

Pii = Cpn = o(1)

since pn ≤ CK
n = o(1) under case (A), together with assumption 3. Therefore, by Lemma B.1 we

have

2||U ′(Λ̂− Λ−Hn)U ||2S
(
∑

i∈[n] Piie2i (β0))
2

= o(K−1) (B.23)

so that combining (B.19), (B.20), (B.21),(B.22) and (B.23) yields

max
i
w̃2
i,n ≤ 4max

i
(w̃i,n − wi,n − λHi,n)

2 + 4max
i
w2
i,n + 4max

i
(λHi,n)

2 = o(K−1)

which proves (B.18).

Next, suppose we are now under case (B). Denote Λ̂ := diag(e21 + ∆2v21 + 2∆e1v1, ..., e
2
n +

∆2v2n + 2∆envn) and Λ† := 2diag(∆Π1e1 +∆2Π1v1, ...,∆πnen +∆2Πnvn). Then

||U ′(Λ̂− Λ−Hn)U ||2S = ||U ′(Λ̂− Λ + Λ†)U ||s2 ≤ 2||U ′(Λ̂− Λ)U ||2S + 2||U ′Λ†U ||2S (B.24)

We first show that the preceding equation is o(K). To begin, observe that

||U ′Λ†U ||2S ≤ ||U ′Λ†U ||2F = 4
∑

i,j∈[n]

P 2
ij(∆Πiei +∆2Πivi)(∆Πjej +∆2Πjvj)

= 4
∑

i,j∈[n]

P 2
ij(∆

2ΠiΠjeiej + 2∆3ΠiΠjeivj +∆4ΠiΠjvivj) (B.25)

23Note that (B) should really be for some sub-sequence K
n

rather than the full sequence. However, we can always
assume W.L.O.G that (B) holds for the full sequence since the result of Lemma B.3 is provided for some sub-sequence.

67



Furthermore,∑
i,j∈[n]

P 2
ijΠiΠjeiej =

∑
i,j∈[n]

P 2
ijΠiΠj

(
ẽiẽj − 2ẽj(P

W
i )′ẽ+ (PW

i )′ẽ(PW
j )′ẽ

)
= o(K) (B.26)

where the last equality follows from

(a) E

 1

K

∑
i,j∈[n]

P 2
ijΠiΠj ẽiẽj

2

≤ C

K2

∑
i,j∈[n]

P 4
ij +

C

K2

∑
i∈[n]

P 4
ii ≤ C

pn
K

= o(1)

(b) E

 1

K

∑
i,j∈[n]

P 2
ijΠiΠj ẽj(P

W
i )′ẽ

2

≤ C

K2

∑
i,j,i′,j′∈[n]

P 2
ijP

2
i′j′ |PW

ij P
W
i′j′ + PW

ij′ P
W
i′j | ≤ CpWn = o(1)

(c) E

∣∣∣∣∣∣ 1K
∑

i,j∈[n]

P 2
ijΠiΠj(P

W
i )′ẽ(PW

j )′ẽ

∣∣∣∣∣∣
(i)

≤ 1

K

∑
i,j∈[n]

P 2
ijΠ

2
i E((P

W
i )′ẽ)2 ≤ C

K

∑
i,j∈[n]

P 2
ij

∑
ℓ∈[n]

(PW
iℓ )2

≤ Cpn = o(1)

where (i) follows from 2|ab| ≤ a2+ b2. In the same way as we have shown (B.26), we can show that∑
i,j∈[n]

P 2
ijΠiΠjeivj = o(K)

and ∑
i,j∈[n]

P 2
ijΠiΠjvivj = o(K),

so that by (B.25) we can conclude

||U ′Λ†U ||2S = o(K). (B.27)

Next, we will show that

||U ′(Λ̂− Λ)U ||2S = o(K) (B.28)

We can express

Λ̂ = diag(e21, ..., e
2
n) + ∆2diag(v21, ..., v

2
n) + 2∆diag(e1v1, ..., envn) ≡ Λ̂1 + Λ̂2 + Λ̂3

and

Λ = diag(σ̃21, ..., σ̃
2
n) + ∆2diag(ς̃21 , ..., ς̃

2
n) + 2∆diag(γ̃1, ..., γ̃n) ≡ Λ1 + Λ2 + Λ3

Then by using 2|ab| ≤ a2 + b2 we have

||U ′(Λ̂− Λ)U ||2S ≤ 4||U ′(Λ̂1 − Λ1)U ||2S + 4||U ′(Λ̂2 − Λ2)U ||2S + 4||U ′(Λ̂3 − Λ3)U ||2S .
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Therefore, to show (B.28) it suffices to show

||U ′(Λ̂1 − Λ1)U ||2S = o(K), (B.29)

since the other terms can be shown in the same way. To this end, recall that e2i = ẽ2i +((PW
i )′ẽ)2−

2ẽi(P
W
i )′ẽ. Then define Λ̂1,1 := diag(ẽ21, ..., ẽ

2
n) so that

||U ′(Λ̂1 − Λ1)U ||2S ≤ 2||Λ̂1,1 − Λ1||2S + 2||U ′(Λ̂1 − Λ̂1,1)U ||2S
≤ 2||Λ̂1,1 − Λ1||2S + 2||U ′(Λ̂1 − Λ̂1,1)U ||2F = max

i
(e2i − σ̃2i )

2 +
∑

i,j∈[n]

P 2
ij((P

W
i )′ẽ)2((PW

j )′ẽ)2

+ 4
∑

i,j∈[n]

P 2
ij(ẽi(P

W
i )′ẽ)(ẽj(P

W
j )′ẽ)− 4

∑
i,j∈[n]

P 2
ij ẽi(P

W
i )′ẽ((PW

j )′ẽ)2 (B.30)

By Van der Vaart and Wellner (1996)[Lemma 2.2.2] and noting the lp-norm inequality ||f ||1 ≤ ||f ||2,
defining f := maxi(ẽ

2
i − σ̃2i )

2 we have

E

(
1

K
max

i
(e2i − σ̃2i )

2

)
=

1

K
||f ||1 ≤

1

K
||f ||2 ≤

n1/2

K
max

i

(
E(e2i − σ̃2i )

4
)1/2

≤ C
n1/2

K
= C

n1/2

K1/2

1

K1/2
≤ C

1

K1/2
= o(1).

under case (B). Furthermore,

(a) E

 ∑
i,j∈[n]

P 2
ij((P

W
i )′ẽ)2((PW

j )′ẽ)2

 ≤
∑

i,j∈[n]

P 2
ijE((P

W
i )′ẽ)4

≤
∑

i,j∈[n]

P 2
ij(
∑
ℓ∈[n]

(PW
iℓ )4 +

∑
ℓ∈[n]

∑
ℓ′∈[n]

(PW
iℓ )2(PW

iℓ′ )
2) ≤ (pWn )2K = o(K)

(b) E

 ∑
i,j∈[n]

P 2
ij |(ẽi(PW

i )′ẽ)(ẽj(P
W
j )′ẽ)|

 ≤
∑

i,j∈[n]

P 2
ijEẽ

2
i ((P

W
i )′ẽ)2

≤ C
∑

i,j∈[n]

P 2
ij

∑
ℓ∈[n]

(PW
iℓ )2 ≤ pWn

∑
i,j∈[n]

P 2
ij = o(K)

(c) 2E

∣∣∣∣∣∣
∑

i,j∈[n]

P 2
ij ẽi(P

W
i )′ẽ((PW

j )′ẽ)2

∣∣∣∣∣∣ ≤
∑

i,j∈[n]

P 2
ijE(ẽi(P

W
i )′ẽ)2 +

∑
i,j∈[n]

P 2
ijE((P

W
j )′ẽ)4

Putting everything together into (B.30) yields (B.29), which in turn yields (B.28). Combining
(B.24), (B.27) and (B.28) yields

||U ′(Λ̂− Λ−Hn)U ||2S = o(K)

Combining the preceding equation with Lemma B.1, (B.19), (B.20), (B.21) and (B.22) yields

max
i
w̃2
i,n ≤ 4max

i
(w̃i,n − wi,n − λHi,n)

2 + 4max
i
w2
i,n + 4max

i
(λHi,n)

2 = o(K−1)
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which proves (B.18) for Case (B). The proof for diverging K case is complete.

Lemma B.4. (Conditional distributional convergence implies unconditional distributional con-
vergence) Suppose we have real random variables X,X1, X2, X3, ... defined on a probability space
(Ω,F ,P). Consider any sub-sigma-field A ⊂ F such that P-almost everywhere, for any Borel set
B ∈ B(R) we have P(Xi ∈ B|A)(ω)⇝ P(X ∈ B|A)(ω). Then Xi ⇝ X.

Proof of Lemma B.4:
We need to show that for any function f ∈ Cb(R), where Cb(R) is the set of continuous and bounded
functions on R, we can obtain

Ef(Xi) → Ef(X) (B.31)

By Dudley (2002)[Theorem 10.2.5], we can express

E (f(Xi)|A) (ω) =

∫
R
f(x)PXi|A(dx, ω) ∀ω ∈ N c

i (B.32)

where Ni is the negligible set for each i ∈ [n]. Define N := ∪i∈Z+Ni where Z+ := {0, 1, 2, ...}, so
that (B.32) holds for any ω ∈ N c, with PN c = 1. For any w ∈ N c, by our assumption we know
P(Xi ∈ B|A)(ω) weakly converges to P(X ∈ B|A)(ω). Therefore, for every ω,∫

R
f(x)PXi|A(dx, ω) →

∫
R
f(x)PX|A(dx, ω).

By Dudley (2002)[Theorem 10.2.2], for every fixed ω, PXi|A(dx, ω) is probability measure over
x ∈ R. Hence, by dominated convergence Theorem and (B.32)

Ef(Xi) = E (E (f(Xi)|A) (ω)) =

∫
ω∈Nc

∫
R
f(x)PXi|A(dx, ω)P(dω)

→
∫
ω∈Nc

∫
R
f(x)PX|A(dx, ω)P(dω) = Ef(X)

which proves (B.31)

Lemma B.5. Assume that we do not have controls W in the data-generating process of (2.1). Fix

any ∆ ̸= 0 and let Z′ΛΠ√
n

= ΘK ∈ RK×n such that ΘK1n = θ̃K ∈ RK is fixed for every fixed K,

where ΛΠ := diag(Π1, ...,Πn) and 1n ∈ Rn is a vector of ones. Suppose that for every fixed K,
||Z ′(ξξ′ − Eξξ′)Z||F = op(1) and assumption 4 holds, where ξi := ei + ∆vi. Furthermore, assume

that λmin(Θ
′
KΘK) ≥ C1 > 0, λmax(Σ1,K(∆)) ≤ C2 < ∞, and ||θ̃K ||2F /K < C1

C2
, where C1, C2 does

not depend on K. Then

lim
K→∞

lim
n→∞

P
(
(Z ′e(β0))

′(Z ′Λ̂(β0)Z)
−1(Z ′e(β0)) > q1−α(χ

2
K)
)
= 0

where Λ̂(β0) := diag(e21(β0), ..., e
2
n(β0))
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Proof of Lemma B.5:
Fix some K. Define Jn,K := (Z ′e(β0))

′(Z ′Λ̂(β0)Z)
−1(Z ′e(β0)) and Σ1,K(∆) := I′2KΣ(∆)I2K ∈

RK×K , where I2K = (IK , IK)′. Then ei(β0)
2 = ξ2i +∆2Π2

i + 2∆Πiξi and Z
′e(β0) = Z ′ξ +∆

√
nθ̃K .

n−1/2Z ′e(β0)⇝ N
(
∆Σ

1/2
1,K(∆)θ̃K ,Σ1(∆)

)
(B.33)

where the convergence follows from the Lindeberg-Feller Central-Limit-Theorem, assumption 4,
Π′Π
n2 = o(1) and ||Z ′(ξξ′ − Eξξ′)Z||F = op(1). The Lindeberg-Feller condition can be verified by
fixing any η > 0 and observing that

1

n

∑
i∈[n]

E{||Ziξ||2F 1(||Ziξ||F > η
√
n)}

(i)

≤ 1

n

∑
i∈[n]

√
E||Ziξ||4FP(||Ziξ||F > η

√
n)

(iii)

≤ C

n

∑
i∈[n]

E||Ziξi||2F
ηn

≤ C

n

∑
i∈[n]

1

ηn
=

C

ηn
→ 0

where (i) follows from the Cauchy-Schwartz inequality; (ii) follows from E||Ziξi||4F ≤ maxi ||Zi||4FEξ4i ≤
C; (iii) follows from Markov-inequality. Furthermore, we have

Z ′Λ̂(β0)Z

n
= Σ1,K(∆) + ∆2Θ′

KΘK + op(1) (B.34)

where the equality in the preceding equation follows from Markov inequality and

E

∣∣∣∣∣
∣∣∣∣∣
∑

i∈[n] ZiZ
′
iΠiξi

n

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∑
i∈[n] Eξ

2
iΠ

2
i trace(ZiZ

′
iZiZ

′
i)

n2
≤
C
∑

i∈[n]Π
2
i supi ||Zi||4F
n2

≤ Π′Π

n2
= o(1)

Therefore, by (B.33) and (B.34), we have

Jn,K ⇝ Z(∆θ̃K)′(IK +∆2Σ1(∆)−1/2Θ′
KΘΣ1,K(∆)−1/2)−1Z(∆θ̃K)

≤
χ2
K(∆2||θ̃K ||2F )

λmin(IK +∆2Σ1,K(∆)−1/2Θ′
KΘKΣ1,K(∆)−1/2)

=
χ2
K(∆2||θ̃K ||2F )

1 + ∆2λmin(Σ1,K(∆)−1/2Θ′
KΘKΣ1,K(∆)−1/2)

≤
χ2
K(∆2||θ̃K ||2F )

1 + ∆2λmin(Σ1,K(∆)−1)λmin(Θ′
KΘK)

=
χ2
K(∆2||θ̃K ||2F )

1 + ∆2 λmin(Θ′
KΘK)

λmax(Σ1,K(∆))

≤
χ2
K(∆2||θ̃K ||2F )
1 + ∆2C3

, (B.35)

where C3 > 0 is some chosen constant such that it does not depend on K and
λmin(Θ

′
KΘK)

λmax(Σ1,K(∆)) ≥
C1
C2

≥
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C3 > 0 by assumption. Finally, note that

χ2
K(∆2||θ̃K ||2F

K )

1 + ∆2C3
=

1 +
∆2||θ̃K ||2F

K

1 + ∆2C3
< 1 (B.36)

whenever C3 >
||θ̃K ||2F

K . Since ||θ̃K ||2F /K < C1
C2

, we can always find such a C3, so that by noting

q1−α(
χ2
K
K ) → 1, combining with (B.35) and (B.36) yields

lim
K→∞

lim
n→∞

P
(
Jn,K > q1−α(χ

2
K)
)
≤ lim

K→∞
P

(
χ2
K(∆2||θ̃K ||2F )
1 + ∆2C3

> q1−α(
χ2
K

K
)

)
= P (1− η1 > 1) = 0

for some η1 > 0.
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C Two estimators satisfying criteria (2.9)

This section provides proof for the consistency of Crudu et al. (2021) and Mikusheva and Sun
(2022)’s estimators under the null, for both fixed and diverging instruments. The diverging in-
struments case is discussed in the aforementioned papers. We show that under some regularity
conditions, consistency under the null still holds for fixed instruments.

Theorem C.0.1 (Standard estimator). Suppose Assumption 1 and 2 holds. If pnΠ′Π
K = O(1), then

for fixed ∆,

Φ̂standard
1 (β0) :=

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i (β0)e

2
j (β0)

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(σ

2
i (β0)σ

2
j (β0) + 2∆2Π2

jσ
2
i (β0) + ∆4Π2

iΠ
2
j ) + op(1 +

∑
i∈[4]

∆i)

= Φ1(β0) +Dstandard(∆) + op(1 +
∑
i∈[4]

∆i)

where Φ1(β0) :=
2
K

∑
i∈[n]

∑
j ̸=i P

2
ijσ

2
i (β0)σ

2
j (β0)

Theorem C.0.2 (Cross-fit estimator). Suppose Assumption 1 and 2 holds. Furthermore, assume
pn

Π′Π
K . Then

Φ̂cf
1 (β) :=

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ij [ei(β0)M

′
ie(β0)][ej(β0)M

′
je(β0)] = Φ1(β) + op(1)

where M := In − Z(Z ′Z)−1Z ′ and P̃ 2
ij :=

P 2
ij

MiiMjj+M2
ij
. For fixed ∆ ̸= 0, if pn

Π′MΠ
K = O(1), then

Φ̂cf
1 (β0) = Φ1(β0) +Dcf (∆) + op(1 +

∑
i∈[4]

∆i)

where

Dcf (∆) = E

(
2∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iΠVj(∆)M ′
jΠ

+
2∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijΠiM

′
ie(β0)ΠjM

′
je(β0) +

4∆

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iV (∆)Vj(∆)M ′
jΠ

+
4∆

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iV (∆)ΠjM
′
je(β0) +

4∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijVi(∆)M ′

iΠΠjM
′
je(β0)

)

with V (∆) := e+∆v.
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C.1 Proof of Theorem C.0.1

Noting that ei(β0) = Vi(∆) + ∆Πi where Vi(∆) := ei +∆vi, we have

Φ̂standard
1 (β0) =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(V

2
i (∆) + ∆2Π2

i + 2∆ΠiVi(∆))(V 2
j (∆) + ∆2Π2

j + 2∆ΠjVj(∆))

=
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijV

2
i (∆)V 2

j (∆) +
4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijV

2
i (∆)Π2

j

+
8∆

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠjVj(∆)V 2

i (∆) +
2∆4

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j

+
8∆3

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠjVj(∆) +

8∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠiΠjVi(∆)Vj(∆)

≡
5∑

ℓ=0

Tℓ

The proof entails showing that

T0 =
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i (β0)σ

2
j (β0) + op(1 +

∑
i∈[4]

∆i) (C.1)

T1 =
4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
j (σ̃

2
i +∆2ς̃2i + 2∆γ̃i) + op(1 + ∆3 +∆4) (C.2)

T2 = op(1 + ∆2 +∆3 (C.3)

T3 =
2∆4

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j (C.4)

T4 = op(1 + ∆3 +∆4) (C.5)

T5 = op(1 + ∆2 +∆3 +∆4) (C.6)

Combining (C.1)–(C.6) yields the second equation of Theorem C.0.1. By recalling that σ2i (β0) =

σ̃2i +∆2ζ̃2i + 2∆γ̃i. Combining with

4∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
j (σ̃

2
i +∆2ς̃2i + 2∆γ̃i) ≤

C(∆2 +∆3 +∆4)

K

∑
i,j∈[n]

P 2
ij = C(∆2 +∆3 +∆4)

and

2∆4

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠ

2
iΠ

2
j ≤

C∆4

K

∑
i,j∈[n]

P 2
ij = C∆4

yields the last equation of Theorem C.0.1.

74



Step 1: We show

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i e

2
j =

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijσ

2
i σ

2
j + op(1) (C.7)

By noting ei = (ẽi −
∑

ℓ∈[n] P
W
iℓ ẽℓ), we observe

1

K

∑
i∈[n]

∑
j ̸=i

P 2
ije

2
i e

2
j =

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽ

2
i ẽ

2
j −

4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽ

2
i

∑
ℓ∈[n]

PW
jℓ ẽℓẽj +

2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽ

2
i (
∑
ℓ∈[n]

PW
jℓ ẽℓ)

2

+
4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽ

2
j

∑
ℓ∈[n]

PW
iℓ ẽℓẽi +

8

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(
∑
ℓ∈[n]

PW
iℓ ẽiẽℓ)(

∑
ℓ∈[n]

PW
jℓ ẽj ẽℓ)

− 4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(
∑
ℓ∈[n]

PW
iℓ ẽℓẽi)(

∑
ℓ∈[n]

PW
jℓ ẽℓ)

2 +
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽ

2
j (
∑
ℓ∈[ni

PW
iℓ ẽℓ)

2

− 4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(
∑
ℓ∈[n]

PW
ℓj ẽℓẽj)(

∑
ℓ∈[n]

PW
iℓ ẽℓ)

2 +
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(
∑
ℓ∈[n]

PW
iℓ ẽℓ)

2(
∑
ℓ∈[n]

PW
jℓ ẽℓ)

2

≡
9∑

m=1

Am

We will show that Am = op(1) for m = 2, 3, ..., 9. First,

E

 4

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(ẽ

2
i − σ̃2i )

∑
ℓ∈[n]

PW
jℓ ẽℓẽj

2

=
16

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i′

P 2
ijP

2
i′j′

∑
ℓ∈[n]

∑
ℓ′∈[n]

PW
jℓ P

W
j′ℓ′E((ẽ

2
i − σ̃2i )(ẽ

2
i′ − σ̃2i′))ẽℓẽj ẽℓ′ ẽj′)

≤ C

K2

∑
i∈[n]

∑
j ̸=i

∑
ℓ∈[n]

P 4
ij(P

W
jℓ )

2 +
C

K2

∑
i∈[n]

∑
j ̸=i

∑
ℓ∈[n]

P 2
ijP

2
ℓi|PW

jℓ P
W
ij |+ C

K2

∑
i∈[n]

∑
j ̸=i

∑
ℓ∈[n]

P 2
ijP

2
ℓj |PW

jℓ P
W
ji |

+
C

K2

∑
i∈[n]

∑
ℓ∈[n]

P 2
iiP

2
ℓi ≤

CpWn pn
K

= o(1)

implying that

A2 =
C

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i

∑
ℓ∈[n]

PW
jℓ ẽℓẽj + op(1)

Furthermore,

E

 1

K

∑
i∈[n]

∑
j ̸=i

P 2
ijς

2
i

∑
ℓ∈[n]

PW
jℓ ẽℓẽj

2
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=
1

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i′

P 2
ijP

2
i′j′ς

2
i ς

2
i′

∑
ℓ∈[n]

∑
ℓ′ ̸=j′

PW
jℓ P

W
j′ℓ′E(ẽℓẽj ẽℓ′ ẽj′)

≤ C

K2

∑
i,i′∈[n]

∑
j ̸=i

P 2
ijP

2
i′j

∑
ℓ∈[n]

(PW
jℓ )

2 +
C

K2

∑
i,i′∈[n]

∑
j ̸=i

∑
j′ ̸=i′

P 2
ijP

2
i′j′P

W
jj |PW

j′j |

≤ C

K2
pWn K +

C

K2
(pWn )2K2 = O(pWn ) = o(1)
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Hence A6 = op(1). The proof of A8 = op(1) is analogous. Therefore we have shown that
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It remains to show that
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By defining γ̂e := (W ′W )−1W ′ẽ, we can write e = ẽ−Wγ̂e, so
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ẽ′PWγ̂e −

1√
K

∑
i∈[n]

PiiẽiW
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instead. Express
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2
j − σ̃2j ) + op(1)

(ii)
= op(1)

where (i) follows from

E

B1 −
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij σ̃

2
i (ẽ
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The proof of B2 = op(1) is analogous to (ii). Hence (C.9) is shown, which proves (C.7).
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Therefore by expression (B.1),
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Therefore (C.1) is shown

Step 3: We show (C.2). Note that we have
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To see this, for the first equation, observe that Eẽiẽℓẽi′ ẽℓ′ ̸= 0 only if i = ℓ = i′ = ℓ′ or two pairs
are equal (e.g. i = ℓ and i′ = ℓ′). Therefore
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2
i − σ̃2i )Π

2
j −

8∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ij ẽi(P
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The second and third equation of (C.11) is shown similarly. Expressing V 2
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im ẽm)2

+
2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijΠj

∑
m∈[n]

PW
jmẽm
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and
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We have shown (C.6), and the proof is complete.

C.2 Proof of Theorem C.0.2

Observe that we can express
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+
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where V (∆) := e+∆v. The proof entails showing
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∑
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2
i (β0)σ

2
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∑
i∈[4]

∆i) (C.13)

as well as

Tℓ = ETℓ + op(1 +
∑
i∈[4]

∆i) for ℓ ∈ {1, ..., 5} and

∑
ℓ∈[n]

ETℓ = Dcf (∆) (C.14)

When ∆ = 0, it is clear that T1 = T2 = ... = T5 = 0, so that the case of Theorem C.0.2 for ∆ = 0
is shown immediately upon proving (C.13); this is shown in Step 1 below. We can therefore focus
on the case of ∆ ̸= 0.

Step 1: We prove (C.13):
Sub-step 1: We show that

2
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∑
i∈[n]

∑
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′
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′
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Express

eiM
′
ie = ẽiM

′
i ẽ− ẽi(P

W
i )′ẽ− (PW
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Therefore
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We first show that
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2
i σ̃

2
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Define the random variable ξij := ẽiM
′
i ẽẽjM

′
j ẽ − E(ẽiM ′

i ẽẽjM
′
j ẽ) so that the mean of ξij = 0.
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Then

E
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ijP̃

2
kℓEξijξkℓ

where I3 is the distinct index of {i, j, k} ∈ [n] and I4 is the distinct index of {i, j, k, ℓ} ∈ [n]. We
first note that maxi,j ̸=i Eξ2ij ≤ C, which follows from the proof of Lemma 2 in Mikusheva and Sun

(2022). Furthermore, noting that P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij
≤ CP 2

ij by Mii = 1− Pii ≥ 1− δ > 0, we have

(a)
4
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∑
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(b) | 4
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∑
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2
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8

K2

∑
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∑
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∑
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∑
I4

P̃ 2
ijP̃

2
kℓEξijξkℓ ≤

C

K2

∑
I4

P 2
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Cpn
K
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where the first inequality of (c) follows from the fact that since i, j, k, ℓ are distinct in I4, the
non-zero terms of E(ξijξkℓ) are given in the proof of Mikusheva and Sun (2022)[Lemma 2] as

|Eξijξℓk|
≤ C|MiiMjk +MijMik)(MℓℓMjk +MℓjMℓk)|+ C|(MjjMiℓ +MijMℓj)(MkkMiℓ +MkℓMiℓ)|
+ C(MiℓMjk +MikMℓj)

2 + C(PijPkℓ + PiℓPjk)
2

The second inequality of (c) follows from Mikusheva and Sun (2022)[Lemma S1.2]. Specifically, we
have
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with the rest of the terms in |Eξijξℓk| dealt in a similar manner. Therefore (C.16) is shown. It

remains to show that 2
K

∑
i∈[n]

∑
j ̸=i P̃

2
ijAi,ℓAj,ℓ′ = op(1) for (ℓ, ℓ

′) ∈ {1, 2, 3, 4} × {1, 2, 3, 4}\(1, 1).
Note that
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i,j∈[n]

P 2
ij = CpWn = o(1)

so that by Markov inequality,
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Next,
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where (i) follows from the fact that the non-zero terms in E(ẽkẽℓẽmẽp) are when the indexes k =
ℓ = m = p, or when we have two sets of indexes such that the first two indexes equal the first set,
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Furthermore,
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implying
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By the simple inequality |ab| ≤ 1
2a

2 + 1
2b

2,
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Restricting (ℓ, ℓ′) ∈ {2, 3, 4} × {2, 3, 4}, by (C.17)-(C.19), using (C.20) we have
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It remains to show that 2
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2
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end, we can repeat the argument in the proof of (C.16) to show that
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where the last equality follows from Markov inequality and∣∣∣∣∣∣ 2K
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2
ℓ )

∣∣∣∣∣∣ ≤ C

K

∑
i∈[n]

∑
j ̸=i

P 2
ij

∑
ℓ∈[n]

|MiℓP
W
iℓ |

(i)

≤ C

K

∑
i∈[n]

∑
j ̸=i

P 2
ij

∑
ℓ∈[n]

M2
iℓ

∑
ℓ∈[n]

(PW
iℓ )2 =

C

K

∑
i∈[n]

∑
j ̸=i

P 2
ijMiiP

W
ii

≤ CpWn
K

∑
i,j∈[n]

P 2
ij = CpWn = o(1)

where (i) follows from Cauchy-Schwartz inequality. Next, we will show

2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijAi,1Aj,3 = op(1) (C.23)

Fix any i. For indexes (k, k′, ℓ, ℓ′,m,m′) ∈ [n]6, define J1 to be the set where k = k′ = ... = m′, so
|J1| = 1. Define J2 to be the set where three indexes are equal, e.g. k = k′ = ℓ and ℓ′ = m = m′.
Define J3 to be the set where two indexes are equal, e.g. k = k′, ℓ = ℓ′, m = m′. Define J4 to
be the set where three indexes and two indexes are equal, and one index equal i, e.g. k = k′ = ℓ,
ℓ′ = m, m′ = i. Note that {Js}4s=1 are not necessarily mutually exclusive in that there may be
overlap. For any i ∈ [n], the non-zero terms in E(ẽ2i ẽkẽk′ ẽℓẽℓ′ ẽmẽm′) are in {Js}4s=1. Therefore, for
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where (i),(ii) and (iii) follows by Cauchy-Schwartz inequality. Putting (a)-(d) together we have
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i )′ẽ)(M ′

j ẽ))
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where (i) follows from 2|ab| ≤ a2 + b2 and (ii) follows from (C.24). By Markov inequality, (C.23) is
shown. Finally,
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where (i) follows from 2|ab| ≤ a2 + b2 and (ii) follows from
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Putting (C.16)-(C.25) yields (C.15).

Sub-step 2: In a similar way to sub-step 1, we can show that
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′
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′
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P 2
ij γ̃iγ̃j + op(1) (C.26)

By expression (B.1) we have

σ2i (β0)σ
2
j (β0) = (σ̃2i +∆2ς̃2i + 2∆γ̃i)(σ̃

2
j +∆2ς̃2j 2∆γ̃j)

Combining with (C.15) and (C.26) yields (C.13).

Step 2: In a similar way to step 1, we can show that Tℓ = ETℓ + op(1 +
∑

i∈[4]∆
i) for ℓ ∈ [5]. It

remains to show that
∑

ℓ∈[5] ETℓ = Dcf (∆), which reduces to showing ETℓ satisfies the property of
D(∆) in (2.9) for ℓ ∈ {1, ..., 5}, in order to complete the proof of (C.14). Note first that

Ee2i = E(ẽi − (PW
i )′ẽ)2 = σ̃2i +

∑
ℓ∈[n]

(PW
iℓ )2σ̃2i − 2PW

ii σ̃
2
i ≤ C
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since
∑

ℓ∈[n](P
W
iℓ )2 = PW

ii ≤ 1, by property of a projection matrix. Similarly,

Ev2i ≤ C and Eviei ≤ C,

so that

EV 2
i (∆) = Ee2i +∆2Ev2i + 2∆Eviei ≤ C(1 + ∆+∆2) (C.27)

By the inequality (a+ b)2 ≤ 2a2 + 2b2 and noting that P̃ 2
ij ≤ CP 2

ij , we have

E|T1| ≤
C∆2

K

∑
i∈[n]

∑
j ̸=i

P̃ 2
ijEV

2
i (∆)(M ′

iΠ)
2 ≤ C∆2

K

∑
i∈[n]

∑
j ̸=i

P 2
ijEV

2
i (∆)(M ′

iΠ)
2

≤ C∆2(1 + ∆+∆2)

K

∑
i∈[n]

Pii(M
′
iΠ)

2 ≤ C∆2(1 + ∆+∆2)pn
K

∑
i∈[n]

(M ′
iΠ)

2

=
C∆2(1 + ∆+∆2)pn

K
Π′MΠ = O

(
∆2 +∆3 +∆4

)
For T2, note that

E(M ′
iV (∆))2 ≤ C(1 + ∆+∆2) (C.28)

To see this, it suffices to show E(M ′
ie)

2 ≤ C, since the other terms in V (∆) are dealt in a similar
manner. Now, MMW = MW − P , where we recall M = In − P , P := Z(Z ′Z)−1Z ′ and MW =
In −W (W ′W )−1W ′. Hence

E(M ′
ie)

2 = E(M ′
iM

W ẽ)2 = E((MW
i )′ẽ− P ′

i ẽ)
2 ≤ 2E((MW

i )′ẽ)2 + 2E(P ′
i ẽ)

2)

= 2
∑
ℓ∈[n]

(MW
iℓ )2σ̃2ℓ + 2

∑
ℓ∈[n]

P 2
iℓσ̃

2
ℓ ≤ CMW

ii + CPii ≤ C

since MW
ii , Pii ≤ 1. This implies (C.28). Expressing M ′

ie(β0) =M ′
iV (∆) + ∆M ′

iΠ, we have
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K
= O

(
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)
Next, to deal with T3 we first show that

EV 2
i (∆) · (M ′

iV (∆))2 ≤ C(1 +
∑
i∈[4]

∆i) (C.29)
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Since V (∆) = e+∆v, it suffices to prove that

Ee2i (M
′
ie)

2 = Ee2i ((M
W
i )′ẽ− P ′

i ẽ)
2 ≤ 2Ee2i ((M

W
i )′ẽ)2 + 2Ee2i (P

′
i ẽ)

2 ≤ C

as the other terms are shown in a similar manner. But this follows from

Ee2i ((M
W
i )′ẽ)2 = Eẽ2i ((M

W
i )′ẽ)2 + E((PW

i )′ẽ)2((MW
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W
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W
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(
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ii M

W
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ii )2PW
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)
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Hence (C.29) is shown. Then
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≤
C∆(1 +

∑
i∈[4]∆

i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij +

C∆(1 +
∑

i∈[4]∆
i)

K

∑
i∈[n]

∑
j ̸=i

P 2
ij(M

′
jΠ)

2

≤ C∆(1 +
∑
i∈[4]

∆i) + C∆(1 +
∑
i∈[4]

∆i)
pnΠ

′MΠ

K
= O

∑
i∈[5]

(1 +
pnΠ

′MΠ

K
)∆i

 = O

∑
i∈[5]

∆i


Next,
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Finally,
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≤ C∆2
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(i)
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where (i) follows in the same way as T4 above. By Markov inequality, we have shown that Tℓ = Op(1)
for ℓ ∈ {1, ..., 5}. Therefore (C.14) is shown, and the proof is complete.

D Limit problem for fixed and diverging instruments

D.1 Limit Problem For Diverging Instruments

Define Qa,b :=
1√
K

∑
i∈[n]

∑
j ̸=i Pijaibj . In the context of diverging K, we say that we have strong

identification whenever C := QΠ,Π → ∞ and weak identification otherwise. Under the arguments
of Chao et al. (2012) and Mikusheva and Sun (2022), one can obtain the following asymptotics for
diverging K: Under both Weak and Strong Identification, for K → ∞, Qẽ,ẽ

Q
X̃,ẽ

Q
X̃,X̃

− C

⇝ N

 0
0
0

 ,

 Φ1 Φ12 Φ13

Φ12 Ψ τ
Φ13 τ Υ

 (D.1)

for C := Q
Π̃,Π̃

, for some (Φ1,Φ12,Φ13,Ψ, τ,Υ). We can take (D.1) as given for simplicity. Under

the alternative we have the following asymptotic for our Q̂(β0)-statistic in the case of diverging K

Theorem D.1.1 (Theorem A.1. of Lim, Wang, and Zhang (2023)). Suppose Assumptions 1, 2
and (D.1) holds. Then for K → ∞,

Qe(β0),e(β0) ⇝ N (∆2C,Φ1(β0))

where C := QΠ,Π, Φ1(β0) = ∆4Υ+ 4∆3τ +∆2(4Ψ + 2Φ13) + 4∆Φ12 +Φ1 and

Φ13 =
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Theorem D.1.2 (Diverging K asymptotics). Suppose Assumption 1, 2 and (D.1) holds. Then for
K → ∞,

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
⇝ N (∆2C,Φ1(β0))

D.2 Limit Problem For Fixed Instruments

Consider now the case of fixed K. Recall that U := Z(Z ′Z)−1/2 ∈ Rn×K so that U ′U = IK and
UU ′ = P . To deal with the convergence of Q̂(β0), we can assume that (ẽ, ṽ) are jointly normal by
the strong approximation. Therefore we can assume(

U ′e
U ′X

)
=

(
U ′ẽ

U ′X̃

)
d
= N

((
0
U ′Π

)
,

(
U ′Λσ̃U U ′Λγ̃U
U ′Λγ̃U U ′ΛṽU

))
implying that

U ′e(β0) = U ′e+∆U ′X
d
= N

(
∆U ′Π, U ′ΛU

)
where Λ(β0) = Λσ̃+2∆Λγ̃+∆2Λς̃ , Λσ̃ := diag(σ̃21, ..., σ̃

2
n),Λγ̃ := diag(γ̃1, ..., γ̃n),Λς̃ := diag(ς̃21 , ..., ς̃

2
n).

We use the variance estimator e2i (β0) := (Yi −Xiβ0)
2 to estimate σ2i (β0) ≡ σ̃2i + 2∆γ̃i +∆2ς̃2i .

Theorem D.2.1 (Fixed K asymptotics). Suppose Assumption 1 and 2 holds. Then for fixed K,
under the null

Q̂(β0)
d
=
∑
i∈[K]

wi,nχ
2
1,i + op(1)

where the χ2
1,i are independent chi-squares with one degree-of-freedom and Dn := diag(w1,n, ..., wK,n)

are the eigenvalues of (Z′ΛZ)1/2(Z′Z)−1(Z′ΛZ)1/2∑
i∈[n] Piiσ2

i (β0)

D.3 Proofs for Section D

D.3.1 Proof of Theorem D.1.1

By Lim et al. (2023)[Theorem A.1.], we have Qe,e = Qẽ,ẽ + op(1), QX,e = QX,e + op(1) and

QX,X = QX,X + op(1), where X := Π + ṽ. An application of (D.1) yields Qe,e

QX,e

QX,X − C

⇝ N

 0
0
0

 ,

 Φ1 Φ12 Φ13

Φ12 Ψ τ
Φ13 τ Υ


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Since Qe(β0),e(β0) = Qe+∆X,e+∆X = Qe,e +∆2QX,X + 2∆QX,e, then

Qe(β0),e(β0) −∆2C =
(
1 2∆ ∆2

) Qe,e

QX,e

QX,X − C

⇝ N (0,Φ1(β0))

D.3.2 Proof of Theorem D.1.2

We can express

(
Q̂(β0)− 1

)
=

1
K

∑
i∈[n]

∑
j ̸=i Pijei(β0)ej(β0)

1
K
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i∈[n] Piie2i (β0)

=
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1
K
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.

By Theorem D.1.1,

1√
K

∑
i∈[n]

Piie
2
i (β0)

(
Q̂(β0)− 1

)
= Qe(β0),e(β0) ⇝ N (∆2C,Φ1(β0))

D.3.3 Proof of Theorem D.2.1

By Lemma B.1 and Theorem 1, we can obtain

Q̂(β0) =
e′UU ′e∑
i∈[n] Piie2i

=
e′UU ′e∑
i∈[n] Piiσ2i

∑
i∈[n] Piiσ

2
i∑

i∈[n] Piie2i

d
=

(
E ′UU ′E∑
i∈[n] Piiσ2i

+ op(1)

)
(1 + op(1))

= E ′Z(Z ′ΛZ)−1/2 (Z
′ΛZ)1/2(Z ′Z)−1(Z ′ΛZ)1/2∑

i∈[n] Piiσ2i
(Z ′ΛZ)−1/2Z ′E) + op(1)

= Z ′DnZ + op(1)

where Z ∼ N (0, IK).
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