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Abstract
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is just moderate. Instead, in this paper, we propose two analytical and two bootstrap-based
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Keywords: Instrumental Variables, Weak Identification, High-Dimensional Instruments

JEL Classification: C12, C36, C55

*We are grateful to Jia Li, Jun Yu, Liyu Dou, Yifan Li, and all the participants at the SMU econometrics workshop
for their valuable comments. All errors are our own.

fSingapore Management University. E-mail address: dennis.lim.2019@phdecons.smu.edu.sg.

Division of Economics, School of Social Sciences, Nanyang Technological University. HSS-04-65, 14 Nanyang
Drive, Singapore 637332. E-mail address: wang.wj@ntu.edu.sg.

$Singapore Management University. E-mail address: yczhang@smu.edu.sg.



1 Introduction

Existing literature on hypothesis testing for Instrumental Variable (IV) models focuses on either
fixed number of instruments asymptotics (e.g. Andrews, Moreira, and Stock (2006), Kleibergen
(2005)) or diverging instruments asymptotics (e.g. Angrist, Imbens, and Krueger (1999), Chao and
Swanson (2005), Andrews and Stock (2007), Chao, Swanson, Hausman, Newey, and Woutersen
(2012), Mikusheva and Sun (2022)). To fully understand the problem at hand, we first restrict
our attention to the Anderson-Rubin (AR) statistic. The reason for this restriction is as follows:
Andrews et al. (2006)[Lemma 1(d)] showed that Z'Y is a sufficient statistic for the parameter of
interest 8 in the general Instrumental Variable IV framework (see (2.1)). They considered the
Anderson-Rubin (AR) statistic', which is a bijective transformation of the sufficient statistic Z'Y.
Since a statistic is a sufficient statistic if and only if their bijective transformation is itself a sufficient
statistic?, it follows that the AR-statistic is a sufficient statistic for the parameter of interest 3. It
is therefore reasonable to simply restrict our attention to this particular statistic and draw out its

most salient features.

Going back to the problem, classical IV models assume that the number of instruments is fixed,
and with it, the two-staged-least-square (2SLS) estimation was proposed. However, Sawa (1969)
and Phillips and Hale (1977), among many others, have shown that the usual 2SLS estimation is
biased whenever the number of instruments (K') diverge to infinity. To overcome this, Angrist et al.
(1999) proposed running a first-stage regression n times, once for each observation, leaving out one
observation at a time, where n is the number of sample size. This is commonly referred to as
7 Jackknifing” of a given statistic. In particular, Chao et al. (2012) derived the asymptotic property
of the Jackknifed-AR test under the case of K — oo, showing that the estimator converges to a
standard normal distribution under some appropriate re-scaling. However, when K is moderate,
it is unclear which statistic the researcher should use. On one hand the researcher could use the
classical AR-test for fixed instrument (defined as AR¢jqssica; in section 6.1), which has size-control
for fixed instruments but has power-deficit when the number of instruments is large (See Lemma
B.5). On the other hand, the researcher could instead use the Jackknifed AR-test (defined as
ARgtandara and AR.y in section 6.1), which provides good size-control whenever the number of
instruments is large, but has size-distortion when the number of instruments is small. A simple

simulation illustrates this issue.?

!They denoted this statistic as S in equation (2.6) of their paper

2This follows straightforwardly from the Factorization Theorem, see for instance Lehmann and Romano
(2006)[Corollary 2.6.1]

3The tests in Figure 1 are simulated based on the design of section 6.2, except we have reduced the sample size
from 400 to 200. The concentration parameter G ~ 70. Note that using a different (higher or lower) concentration
parameter does not change the size, shape, power-ranking, and percentage difference in power among the tests. In
fact, G =~ 70 was a result of mx = 0.25, which is very small in practice.
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Figure 1: Power curve for K = 15
Note: The red-line with downward-pointing triangle represents Q)siandard; the green line with a
colored-circle represents A Rgiandard; the black dotted line with ‘x’ represents AR jqssical; the orange-
line with colored-square represents Jgigndard- Lhe first horizontal dotted black line represents 5%,
while the second represents 10%.

Figure 1 demonstrates the case of moderate instruments, with the number of instruments being
15 and sample size equal 200. We propose four tests that are robust to weak-identification and
instrument number in this paper, two of which are denoted as Qstandard and Jstandara (S€€ section
6.1 for the description of these tests). At the true parameter 5 = 0, ARgtandarq has a size-distortion
of 8%, while the sizes of Qstandard, Jstandard ANd ARegssical are 5.3%, 5.4% and 3.1% respectively.
We can see that the power of AR jqssicar 18 low throughout, while Qgsandard and Jsiandard have
the added advantage of mirroring A Rstandard’s power while controlling for size. Our proposed test
takes into account this mismatch between fixed and diverging instrument asymptotics, and provide
a critical-value that converges in both cases to the correct asymptotic limit distribution under the
null, regardless of identification strength, so long as the number of controls grow slower than the
fourth root of the number of instruments*. The critical-value defined in (2.8) is related to Anatolyev

and Solvsten (2023),” and we extend their result to the problem of weak instruments.

“Chao, Swanson, and Woutersen (2023) showed that when the dimension of controls are large, partialling these

controls out leads to inconsistent estimates under weak identification. They assumed @ = o(1), where dw is the
dimension of the controls, and showed that this condition is sufficient for consistent hypothesis testing. We have a
similar type of assumption here (see assumption 2)

5In particular, they showed that a weighted chi-bar distribution is able to mirror statistics of the AR-type - we



Relation to the literature: Tests that allow for both fixed and diverging instruments dates back
to Anatolyev and Gospodinov (2011). They proposed an estimator that is robust to the number of
instruments, but requires errors to be homoskedastic. To improve finite sample performance Kaffo
and Wang (2017) proposes bootstrapping as an alternative, although it relies on homoskedastic er-
rors once again. Maurice J. G. Bun and Poldermans (2020) relaxes the assumption of homoskedastic
errors but requires Z;e; to be identically and independently distributed (i.i.d.), where Z; is the in-
strument and e; is the second-stage error. Relaxing the i.i.d. assumption, Boot and Ligtenberg
(2023) proposed an estimator based on a continuous updating objective function (see their Corollary
2), but their approach relies on an invariance assumption on the second stage error term. Belloni,
Chen, Chernozhukov, and Hansen (2012) relaxes the i.i.d. and invariance assumption, but require
the first-stage IV moment to be sparse. However, Kolesar, Muller, and Roelsgaard (2023) advised
against making sparsity assumption whenever the number of instruments is less than the sample
size. In contrast to the aforementioned approaches, our test procedure allow for heteroskedastic

error but does not rely on invariance or sparsity assumption.

Structure of the paper: Section 2 makes precise the model setup and provides the testing
procedure for our statistic under full-vector inference for both fixed and diverging instruments. It
further motivates and introduces the robust critical-value for our test statistic. Section 3 provides
a new strong approximation result for any ‘AR-type’ tests. Section 4 provides the asymptotic size
and power properties of our test. Specifically, this section demonstrates that our test consistently
differentiates the null from the alternative under strong identification, for both fixed and diverging
instruments. Furthermore, that our test have exact asymptotic size-control for both fixed and
diverging instruments is also shown. As an additional result, we derive in this section the exact
distribution of a generic Jackknifed-AR statistic under fixed K setting. Note that the number of
instruments is assumed to be less than the sample size in sections 2—4 in order to simplify our
discussion. Section 5 relaxes this and allow the number of instruments to be possibly larger than
the sample-size. In particular, this section discusses the case of instruments being rank-deficient,
and includes high-dimensional instruments as a special case. Section 6.2 provides simulation results
for our power-curve based on calibrated data, which lends itself to our theory. Section 6.3 provides
an application of our theory to empirical data. Proofs of Theorems, Lemmas, and Corollaries stated
in the main text are shown in Appendix A, while Auxiliary Lemmas are provided in Appendix B. In
Appendix C we provide details on the two estimators satisfying (2.12). In Appendix D we discuss
general limit problems under fixed and diverging instruments. Appendix E provides more detail on

the rank-deficiency problem of Section 5.

Notation: We write [n] to mean {1,...,n} and N := {1,2,...}. In this paper, n is generally taken

say that a statistic T is of an AR-type if we can express T' = € Ae for some deterministic symmetric matrix A and ¢
is a random vector with zero mean and well-defined (or finite) covariance matrix.



to be the sample size, unless otherwise stated. For any vector or matrix A, ||A||p := /trace(A’A)
is taken to be the Frobenius-norm. When there is no room for confusion, we simply write it as || A]].
The spectral norm is denoted as [|Al[s := \/Amaz(A’A), where Amin(B) and ez (B) are defined
as the minimum and maximum eigenvalue of a square matrix B. For any real numbers a,b € R, we
write a < Cb to mean that a is less than or equal b times a constant C' that is independent of sample
size n. For any index j, integer m and constant C > 0, we write X,an (C) to mean the jth chi-square
random variable with m-degrees-of-freedom and non-centrality parameter C. At times we do not
include the index j, and write simply as x2,(C) to mean a generic chi-square random variable with
m-degrees-of-freedom and non-centrality parameter C. We also write Xgmj to mean Xfmj(O), ie.
centrality parameter equal zero, and write WPA1 to mean ‘with probability approaching one’. We
define ¢; to be a vector of zeros, with value 1 only on the ith element. For any set S, we write S¢ to
mean the complement of the set, and use the symbol ‘®’ to denote Kronecker product. We write
Zx(J) to represent a standard Gaussian plus a constant J € RX i.e. Zx(J) := N(J, Ix). For any
statistic T', denote q1—q(T") to be the (1 — a)-quantile of the law of T'.

2 Setup and Testing Procedure

2.1 Setup

Consider the model

Y =XB+W +¢

X=11+47 (2.1)

where X € R™dx W e R™dw_ dy is of some fixed finite dimension, Y,& € R, II; =
E(X;|Z;, W;) € R™4x where Z € R™K is the matrix of instrument with full-rank.® Also, 3 € RIx
and € RW>! We observe (17, X W, Z ), and assume that W is a full-ranked exogenous control
matrix with dy < n, implying that its projection matrix Py := W(W'W)~'W’ is well-defined.
Furthermore, the error terms ¢; are assumed to be independent across i. We assume throughout
this paper that dx = 1 in order to highlight the most salient features of our test, but we remark
here that it can be extended to higher dimensions (i.e. dx to be of dimension greater than one) so

that /3 can be multivariate.”

We are interested in testing

Hy:B=py wversus Hi: B +# By (2.2)

5Note that assuming Z is of full-rank implies that the number of instruments must be less than the sample-size
"See Remark 1



simultaneously for both fixed and diverging instruments. To this end, we want to obtain a test that
has size control under the null, irregardless of identification strength. We allow the dimensions of
the instruments and control, K and dyy, to diverge to infinity as n — oo (these dimensions can be
fixed as well), with the added allowance that whenever they do diverge, K can grow at the same
rate as the sample size, while dy must grow at a slower rate than the sample size. For now we

assume that K < n, but we wil relax this is section 5.

To simplify matters, we first partial out the controls W and rewrite the model as

Y=Xp+e
X =1+ (2.3)

where Y = MyY, X = My X, Il = Myll, e = My¢, v = Mw?v, Z = MwZ, My = I, —
PY where PV := W(W'W)~'W’. Throughout the text, we denote 2 := Ee?,s? := Ev?,07 =

Ee?,¢? := Ev?,5; := Cov(€;,v;) and P := Z(Z'Z)"1Z'® We define ¢;(50) :=Y — XBy = e + AX,
where A := 8 — By. We define a?(ﬁo) = 8’2-2 +2A75; + A% and g?(ﬁo) = EZQ + 2A7; + A25l~2. For

2

notational simplicity, we write e := (e, ..., e,)’ instead e(fy) whenever 8 = 5y. Furthermore, define

; i Pijab; .
U:=2(2'2)""? ¢ RK and Qu := Licin) Z\:/]? 1% for any two vectors a, b € R", where P, is

the (i, 7)-th element of P. We make the following assumptions thought-out the rest of the paper.

Assumption 1. Suppose that the errors (€;,v;) are mean zero and independent over i.

Assumption 2 (Moment conditions). Suppose 52 = o(1) and p, < 0 < 1, where p, := max; Py;.
Furthermore, assume plY := max; P}/ = o(1), and dw = O(K1=/%) for anyn > 0. Let the errors
and |II;| be bounded in the eighth moment and bounded away from zero in the second moment,
i.e. max; (I8 + Ee8 + E?Y) < C < oo and (I'TN)%,02(By), <2 (Bo) > C > 0. Furthermore, suppose

C < Anin(W'W/n) < Amax(W'W/n) < C and that Z has full rank.

For a balanced-instrument design without controls, p, = £. Hence, for both fixed and diverging

o
K, P2 =1 = o(1). Note that p, > 0 since 3

- ] P;; = K. Furthermore, p, < 1 since each element

i€[n
on the diagonal of a projection matrix is alway[s bounded by one. We allow the number of controls
to diverge to infinity. However, in order for p,VLV to shrink to zero in assumption 2, the increase in
dimension of the control dy must be slower than n (i.e. dy = o(n)), since by definition, p}V" > dTW.
In particular, we require that the increase in number of controls be slower than the rate of increase

in the fourth root of the number of instruments for any arbitrarily small n > 0. This assumption

8This implies that the partialled-out instrument matrix Z is full-ranked. In section 5 we discuss what to do in the
event Z is not full-ranked.



ensures that we can strongly approximate our statistic.” In the case of fixed K,

Pty p}l/z 1/2 1-n)/2 prl/2
K12 ~ K12 (p/?-0(1) - K~1=/2) = K1/2O(1) =0(1)0O(1) = o(1)

Under diverging K,

Pnd%y d%y —(1-n)/2 7-1/2
1)y < et = 0() KUY = o(1)

2.2 Some Background and Motivation

In this section we briefly discuss the general difficulties of constructing a test that has simulta-
neous size-control for both fixed and diverging instruments. Consider first the classical case of
homoskedastic variance and fixed instruments. For simplicity, we assume for the moment that
control matrices are not present in the model of (2.1). Under the null, a consistent estimator of

2

the variance o2 can be given by 52 := %Zie[n] e?. Then under the usual regularity assumptions,

by continuous mapping theorem the estimator

e’ Pe B 1
Ko2  Ko? +0,(1)

1
(n=Y2Z'e) (n 1 Z2'Z) " (n"V2 7€) ~ ?X%(

Consider now the case of diverging instruments. Note that by Chao et al. (2012)[Lemma A2],

; . Pijese; ; P;ie? ; Pji0? ; Py;
2icln] 22;;;2 A U N(0,1). Furthermore, WPA1 we have Zlé}%z S zze%,z 7 = Zle}?] =1
(See Lemma B.1). Therefore we have

e€Pe 1 Dlieln) 2ujzi Diseic) N Yicin) D€} e

K32 VK K52 K52

Observe then that there are two distinct limiting distributions for the same (classical) statistic under
two different cases of instruments. In fact, for the diverging K case, ¢’ Pe itself would diverge to
infinity, so that the denominator K acts as a form of normalization. This normalization has the same
icin) Piie; = O(K),
while the non-diagonal elements ;1 22,4, Pijeie; = O(VK), so that the order of the diagonal
terms dominate the non-diagonals. Note that the non-diagonals have a smaller order due to it being

centered. At this stage, we conclude that the statistic ;;];S does not work simultaneously for both

order as the diagonal elements. To see this, note that the diagonal elements

cases of instruments, due to the diagonal elements. This highlights the importance of removing
the diagonals under diverging K. Therefore, in order to consider both cases of fixed and diverging

instruments simultaneously, a natural idea would be to focus on the Jackknifed statistic, where the

9See Theorem 1 and the discussion after.



diagonals are removed, i.e. the statistic

Dicin] 2 Fijei€;

)

2Ko?
. X%(—K_ . . . X%.—K
which converges weakly to a NI distribution under fixed K. As K — oo, we see that e

N(0,1). A researcher would therefore be inclined to use the following test under homoskedasticity:

Reject whenever

D icin) 2oji Fijeic; - (X% - K)

K57 T\ VeK
As a matter of fact, they would have exact asymptotic-size control in either case of fixed or diverg-
ing instruments. Therefore, to establish an estimator that is robust to both fixed and diverging
instruments, the key is to apply the jackknifed-version; this works under homoskedastic errors.
However, under general heteroskedasticity, this matter becomes further complicated. To see why,

consider some variance estimator ®;(53p) so that under the null,'?

] L Peies
Zze[n] Z];éz A -

2K P4 (Bp)

N(0,1)

when K — oco. When instruments are fixed, the asymptotic distribution of this statistic is no longer
(x% — K)/V2K, making inference challenging. Nevertheless, as we explain in the next section, even
under diverging controls and heteroskedastic errors, our method provides exact asymptotic size-

control simultaneously for both fixed and diverging instruments.

2.3 Analytical Test Statistic

Our test statistic is denoted as Q(8y) and defined as

e(Bo)' Pe(fo)

Q(Bo) == 5 o Pac?(50)

(2.4)

Our test compares the test statistic @(60) with a robust critical value C’mdf((f)l(ﬂo)), where « €
(0,1) is the significance level and under the null, ®;(83y) is a consistent estimator of ®(8y) =
2 Dicln] 2ot PZo?(Bo)o3(Bo), with more details provided in section 2.5. We will reject Ho : § =

By at « significance-level if

Q(Bo) > Caar(®1(B0))-

To see the exact formula of the critical value, we need to explain the limit distribution of our

10Gee section 2.5 for more details on this estimator



test statistic @(ﬂo) under the null, in which case the e;(8p) has mean zero and variance o?(f) for

B = Bo. When K is fixed, under regularity conditions, we can show that

Q(Bo) ~ Z'DnZ =Y wnixiy (2.5)
ke[K]

where Z ~ N (0, Ix) and D,, := diag(wi y, ..., Wk ) are the eigenvalues of

(Z'MBo)2)"*(2'2)H(Z' A (po) Z)*/?
>icin Piio? (Bo) ’

Q(bo) = (2.6)

where A(By) = diag(o?(Bo), - ,02(B)), and {X%,i}ie[[ﬂ are K independent chi-squared random
variables with 1 degree of freedom. The denominator of (o) (i.e., X e Pi;02(f30)) is chosen so
that trace(2(Bp)) = 1. Also note that Q(fp) is positive semi-definite, implying that its eigenvalues

(w1, ,wk) are nonnegative and sum up to 1.

Suppose ZA\(ﬁo) = diag(e2(Bo), -+ ,€2(Bo)). Then, when K is fixed, we can consistently estimate

the eigenvalues (w1 p, ..., Wk ) by the eigenvalues of

(Z'M(B0)2) (2 2)~1(Z'N(Bo) Z) '/

Q(Bo) =
Zie[n] Piielz (Bo) ,
which are denoted as W, = (Wi, - ,Wk,,). This motivates us to consider the 1 — a quantile
of weighted chi-squares random variable with weights w,, (i.e., Fg, = Zie[K] {Ei,nX%,i)’ which is

denoted as q1—(Fg, ) and can be simulated given w. However, the eigenvalue estimators are not
consistent if K is diverging as fast as the sample size n. Fortunately, in this case, we can show that
that

pL/2 > Piet(Bo) | (Q(Bo) — 1) ~ N(0,1)

1
(Bo) \/I?ie[n]
and

-1
> 2@k, +1/df | (Fa— 1)~ N(0,1).

ke[K]

where ®1(5)) = 2 Dicn] 2oicln] 2uji Péaf(ﬁo)a?(ﬁo) and df is our degree-of-freedom-adjustment.



In particular, df is some deterministic sequence such that!!

df ' = o(K /). (2.7)

In fact, we allow df to take the value of oo so that 1/df can be taken to be zero. For generality
we simply assume df satisfies (2.7). This degree-of-freedom correction is asymptotically negligible,
but is included for better finite-sample performance.

Given a consistent estimator @1 (o) of ®1(8), we can adjust the critical value q1_q(Fy, ) as

n

. D) Gi—o(Fa ) —1

Co,af (@1(Bo)) =1+ — P2 1-al lfvv”) (2.8)
VE 2 iepm Piiei (Bo) \ | /2 >iclK] w%n + 1/df
This adjustment guarantees the asymptotic size control of our test under diverging K case.
Lastly, we note that the critical value Cmdf((f)l(,é’g)) can be rearranged as
- 31 (o)
T Lien) Piie} (Bo)

G1-a(Fi,) + (@1-a(Fy,) — 1) | 2= -1]. (2.9)

/2 2ielk] w;, +1/df

When K is fixed, we are able to show that, under the null,

V/®1(Bo)

= Licin Pic?(Bo)
2 el Ui, + 1/df

implying that the adjustment of the critical value is asymptotically negligible. This guarantees the

—-1-20,

asymptotic size control of our test under the fixed K case.

2.4 Bootstrap-based Test
The Bootstrap-based statistic is defined as

Yieln] 2= Pigei(Bo)e; (Bo)
K®1(fo)

J (B0, @1(Bo)) = (2.10)

"Tn our simulation (section 6.2), we let df = (n — K)/2. To see why this holds, note that by assumption 2,
max; P;; < 6 < 1, so that % = % < § < 1. Therefore [('1/2df_1 = 2\/ﬁ\/ 1< 2\/1/67171\/

n—K —

1 —
n—K

O(1),/ 1% = o(1), where the last equality follows from n — K — oo since £ < § < 1.

10



with ‘/131(50) satisfying (2.12) and has the additional requirement that it can be constructed from
using only e(fy) and P. The two estimators ®;(8o)**@4ard and &;(By)e! discussed in section 2.5

satisfy this requirement. We will reject Hyg : 8 = [y at « significance-level if

J(Bo, ®1(B0)) > CZ s (B1(5o), L),

where CB . (®1(By), £) is the critical value that depends (1) on some large positive integer B, (2)

a,d

signiﬁcancflivel @, (3) i.i.d. random variables {;};c[, following the probability law £ with the
property that its mean is zero, variance is one, fourth moment is bounded, and (4) the structure
of the variance estimator @1(,30). The critical-value is computed in the following manner: Fix
Bo, a large B, and some a € (0,1). Fix any ¢ € {1,..., B}, and generate i.i.d. random variables
{Kie}iepn following the law £. We then multiply each e;(5o) by kie, denoting the new random
variable 7; ¢ 1= k; ¢e;(fp). Since @1(60) is assumed to be constructed by using only e(fy) and P, we
construct @fs’g(ﬁo) in exactly the same way that (o) was constructed, but replacing (e(8), P)

with (n¢, P), where ny = (11,4, ..., n¢)’. Once this is done, we can construct the statistic

FBSL._ Zz’e[n} Zj;éz’ Fijnieng.e
K& (5o)

By repeating this process for every ¢ € [B], we obtain a collection of statistics {j BS’Z}ZG[ B]- Then

> e {jBS’Z < Z}
B

Cf,deS(‘f’l(ﬂo),ﬁ) =infqzeR:1-a< +1/dfBs (2.11)

where dfgé = 0(1) is a deterministic sequence that is asymptotically negligible, but is included for

better finite-sample performance.'?

2.5 Estimator for Critical Value

We provide further details of &’1(60) discussed in the previous section. We assume that @1(&)) is

some estimator satisfying

1 (o) = 1(Bo) + D(A) + 0p(1 + Y AY) (2.12)

i€[4]

In section 6.1 we take dfgs = (3 log(n — K))/(n — K) . To see that this is an o(1) term, simply note that
n — K — oo by assumption 2, and apply L’Hopital rule.

11



where

®1(Bo Z > Piot(Bo)o’ (o)

ze[n] J#i
and
O(1) if A #0 is fixed

D(A) =
o(1) if A=o(1)

We introduce two estimators that satisfy (2.12) — this is shown in Appendix C. The first estimator
is due to Crudu, Mellace, and Sandor (2021), which we denote as

(bimndard( Z Z P12] 12 50)

ze[n] J#i

In this case, its accompanying function for D(A) is given as'

Dstandard( Z ZPQ 2A2H2 2(50) +A4H?H?)
ze[n] J#i

In order to decrease the size of the variance estimator under the alternative, we further consider

the cross-fit variance estimator due to Mikusheva and Sun (2022).

¢ (By) = Z > Pllei(Bo)Mje(5o)][e;(Bo) Mje(Bo)]

ze[n} J#i

2

PZ y . . . . .
J
Mo, 732 which is the second estimator satisfying

(2.12). Tts corresponding asymptotic property as well as the expression of D/ (A) is provided in

where M := I, — Z(Z'Z)"'Z' and P? =

Theorem C.0.2.'* To see why the cross-fit estimator works, under the alternative, we can express
ei(Bo) = e; + AIl; + Av;. Consider the case where Il = Z6p. Then II = MylIl = My Z6,, so
that MII = MMWZGO =MZOy=0as Z = MWZ Hence we can remove the effects of A from
II;. The bias of the standard variance estimator (ffta”da’”d(ﬁo) grows the at fourth power of A,
so that removing this component leads to higher power. Note that whenever the controls W are
dropped out of the model (2.1), the cross-fit estimator is exactly Mikusheva and Sun (2022)’s cross-
fit estimator and E@ff (Bo) = ®1(Bo) under the null. However, when there are exogenous controls
in the model, Effﬁf(ﬁo) # ®1(Bp) due to the effects of partial-ling out the controls My from the
error terms ¢, which leads to dependence among the error terms e; in the reduced-form model

(2.3). The reason we are still able to obtain a consistent cross-fit estimator under the null lies in

13This is shown in Theorem C.0.1
1 Note that the cross-fit estimator is more ‘costly’ than the standard estimator in the sense that the former requires
that max; P;; < < 1, while the latter does not have this requirement.
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the assumption that p}’ := max; P}/ = o(1).

3 Strong Approximation

This section is concerned with the conditions for which we can view the error terms (€;,v;) as being
normally distributed. This is important for understanding the limit distribution of (2.4) under

fixed instruments, as well as generic Jackknifed-AR tests under fixed instruments.

Consider a sequence of independent random variables {e;};c, such that & ~ N(0,57), so
that e; mirrors the first and second moment of €;. We assume that {e;}c[, is independent of
{(€i,0n) }icn)- We have the following result which tells us that under the null, whether our statistic

is Jackknifed or of the AR-type, we can always treat our errors as being normally distributed.

Theorem 1 (Strong approximation). Suppose assumption 1 holds and sup;en E(€;)* < oco. Then

we have

Z Z Pmelej Z ZPUE &;

ze[n] jF#i ze[n ] j#i
1/2 | 3/2 1/3
Lo || P2 4 Pl dw) Padiy
P K1/2 K1/2
where p, := max; P;; and £ := Mye. Furthermore,
1/2
1, / Dn
?eP 75P5+O ( 1/2>
The requirement for strong approximation is very weak, namely that £2 = o(1) and I;zl 7 =o(1).

In the simple case where dy is bounded, i.e. dy < C for some C < oo, we only require that

B2 = 0(1), since then

dyp? ) /A /A
n 1/4 Pn n
g = Onl e < O = o)

In view of Theorem 1, we can view errors to be normally distributed under assumption 2. The
requirement for the eighth-moment of errors to be bounded is used only to control the size of our
test statistic under the diverging K case, specifically when K diverges at the same order as n (see

Theorem 2 and Lemma B.3, diverging K case).
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4 Asymptotic properties

4.1 Asymptotic size

We discuss the size properties of our test in this section. We begin by making the following

assumption, which ensures that we have uniform size-control.
Assumption 3. Suppose p, < 6% for some C < o0

Intuitively, Assumption 3 states that the largest value on the diagonal of the projection matrix

P is regular in the sense that the order of p,, is equal to the fraction of instruments over the number

of observations, % This follows from the fact that, by definition, % < pn- In the case of balanced
K

instruments, we have that p, = 7-. Furthermore, note that this assumption automatically implies

the first part of Assumption 2, since then 22 < CE L = g =o(1).

By the results of the previous sections, we can show uniform size-control of our test under any
identification strength, simultaneously for both fixed and diverging instruments. Let A\, € A,, be
the data generating process of n observations for (€,v, Z, W). We impose the following restriction

on the sequence of classes of DGPs ({Ap}n>1):

{€, '17,~}Z-€[n] are independent, Ee; = Ev; = 0,
ba = o(1),pY = o(1),dw = O(K1="/%) for any n > 0,
max; H? + max; E’éjg3 + max; Eﬁ? < C < o0,
ML, 02(Bo), ¢2(Bo) > C under the null,
C < Amin () < Anaa(EH) < €,
0<P; <0<,
il(ﬁg) satisfies (2.12) under the null,

where 0 < C,C,d < oo are some fixed constants

(4.1)

Then our test has size-control uniformly over the set of DGPs that satisfy (4.1). We formalize the

statement as follows:

Theorem 2. Suppose {Ay,}n>1 satisfies (4.1), (2.7), and assumption 3 holds. Then under the null,

for both fized and diverging instruments, we have exact size-control for the proposed tests, i.e.

liminf inf P, (@(/50) >ca,df(<f>1(ﬁ0))) = limsup sup Py, (@(ﬁo) >Ca,df(<f>1(ﬁo))) =a

n—o0 A\,€An n—oo A\,€An

and

liminf inf Tim Py, (T(Bo, B1(80)) > CZ . (B1(50). £))

n—oo \p,€A,, B—oo

= limsup sup lim Py, (j(ﬂ(b ®1(f0)) > Cf,dfgs(a;l(ﬁ(])aﬁ)) =a

n—00 ApEA,
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Remark 1. Note that Theorem 2 still holds when [ is multivariate (instead of a scalar in (2.1)).
This is because under the null, the true error € can be taken as known, with the remaining compu-
tation of our test depending only on the controls W and instrument Z, both of which are observed.
Therefore, repeating the proof under the null yields uniform size-control for any 8 € RIX with fized
dx > 1.

4.2 Asymptotic power

In this section we show that under strong identification, for both fixed and diverging instruments,
our test consistently differentiates the null from the alternative, where strong identification means
C := Qun — oo. The concentration parameter C was introduced by Mikusheva and Sun (2022).1
To motivate this concentration parameter, note that under the linear IV setting where IT; = 7' Z;, for
K — oo it was shown in Mikusheva and Sun (2022)[Theorem 1] that whenever % is bounded,
no test can consistently differentiate the null from the alternative. Furthermore, Chao et al. (2012)’s

consistent estimator was based on the assumption that % — 00.16 Taken together, one can

expect that the requirement of % — o0 in the linear IV setting is important to ensuring that
our test consistently differentiates the null from the alternative. In fact, this requirement is equal to

requiring that C — oo, which explains why C should be the right measure of identification strength.
17

4.2.1 Diverging instruments

We want to evaluate the power of our test @(60) and J (Bo, @1(60)) under permutations of different
scenarios. In particular, we consider three cases for some sequence d, — 0: (1) Strong identifi-
cation and local alternative, where d,,C = C and A = Ad/? for some fixed A,C € R; (2) Strong
identification and fixed alternative, where d,C = C and A = A; (3) Weak identification and fixed
alternative, where C = C and A = A.

Theorem 3. Suppose Assumption 1, 2, 3, (2.7) and H/TH = O(1) holds. Then for any estimator
:I\)l(ﬁo) that satisfies (2.12), we have under strong identification and fixed alternative

lim P (Q(B0) > Caar(®1(50))) =1

15Section D provides more detail regarding the concentration parameter C
16See Assumption 2 of their paper
7' Zx | Dieln] Pii(x'Z:)?

17To see this, note that we can express the concentration parameter as C = T T NG , so that by
assumption 2, (1 — 5)% <C< % We can then see that the order between ”/%” and C are the same.
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and

lim lim P (j(ﬁo,(i;l(,@o)) > chides (ZI\)l(ﬂO)aﬁ)) =1

n—o0 B—oo

Theorem 3 shows that whenever identification strength diverges to infinity, our test consistently
differentiates the null from the alternative. Note that in general, for any fixed alternative A not

necessarily zero, for diverging K we have that!®

Fm —1
V2 i @2, + 1/df

Therefore, under weak identification with fixed alternatives, we have the following result:

~ N(0,1)

Theorem 4. Suppose Assumption 1, 2, 3, (2.7) and H/TH = O(1) holds. Then for K — oo and any
estimator ®1(By) = ®1(Bo), we have under weak identification and fizved alternative that

Jim P (@(ﬁo) > Cadf((i\)l(BO))) =1-F <Q1a(N(0, 1)) - %)

and

. . B —1_ ==
Tim Jim P (T8, B1(5) > Oy, @1(80). £)) =1~ F (qlauv(o, D) - /3@)
where F () denotes the cumulative distribution function (CDF) of a standard normal distribution.
In particular, if we further assume II'MTII < HITH — 0, then @1(50) can be taken as EI\D{(BU) for

¢ = {standard,cf} given in section 2.5.

The assumption of H/TH — 0 automatically ensures that @‘{ta”dard(ﬂo) TN ®1(5p), while the
additional requirement of TI' MTI < HITH is made to ensure that @if(ﬁo) 2 ®(B) as well. Next,
we have the asymptotic power for our test under strong-identification and local-alternative, which

is similar to the case of weak identification and fixed alternative.

Theorem 5. Suppose Assumption 1, 2, 3, (2.7) and H/TH = O(1) holds. Then for K — oo and any

estimator </I;1(ﬁ0) that satisfies (2.12), under strong identification and local alternative we have

tim P (Q(60) > Cogr@1(60))) =1 - F <ql_a( Moy B )
n—oo ; \/m

18See the proof of Theorem 3
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and

n—o00 B—oo

lim lim P (f(ﬁg, @1 (6o)) > cgdes@l(ﬁo),z)) =1-F (ql_a(/\/(o, 1) - )>

4.2.2 Fixed instruments

We introduce a measure of identification strength for a fixed number of instruments, defined as

fir, = sl

where pg p, == n~1/2Z'T1. For notational simplicity we drop the dependence on n and simply denote
trn by pr. Note that there is an intimate relationship between the concentration parameter
defined above for the fixed K case (i.e. fi2) and the concentration parameter C defined for the
diverging K case discussed earlier: fi2 and C have the same order. To see this, note that under the

assumption that Z'Z/n TN Q 7z, a positive-definite matrix, we have that with WPA1,

VAVA Z'Z\ ! Amaz(Q22)
i < Amag .y = Amaz I pPII < 2Rz v22/ z2Z) 2
Hn = n MK n HE (Qzz) o Amin(QZZ)Mn

where we note that fi2 = pfpr. Since 0 < Apin(Qzz) < Amaz(Qzz) < C, [2 has the same
I PII Diefn) Pill}

! . : ~2

order as II'PII; as K is fixed, p; has the same order as Vi Furthermore, observe %/? <
icin] Fii . 4 ic[n] i1l

max; H?Z’e% < Cv K < C under fixed instruments, so that % =C+ % has the

same order as C. Combining these facts yield the result that /i3 has the same order as C.

We say that there is strong identification whenever fi2 — oo. Otherwise we say that there is
weak identification. To be precise we consider three cases for some sequence d,, — 0: (1) Strong
identification and local alternative, where A = Ad,, for some fixed A and 02 = %/d? for some
positive and finite constant 1; (2) Strong identification and fixed alternative whereby 2 = fi?/d?
and A = A; (3) Weak identification and fixed alternative where A = A and f2 — 0%, where 2 is
some finite positive value. Note that weak identification and local alternative is not discussed since

it has no power. Defining Ag;(A) := E(e;, Av;)(€;, Av;)’, we make the following assumption:

Assumption 4. For every sequence of A, — AT € R, suppose %Zie[n] Noi(A,) ® Z:Z] — Y(AT)
and ZITZ — Qzz, where L(AY) is positive-semi-definite and Qzyz is positive-definite matrices. Fur-

thermore, assume that sup; ||Z;||r < oo.

Under the assumption that the errors in the DGP of (2.1) are independent and identically
distributed, the assumption that 1 D icin) Noi(An)®Z; Z] — Y(AT) in assumption 4 can be removed.
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Recall from (2.9) that the power of our proposed test involves the critical value that is itself
random. This randomness comes from the limit of the eigenvalues from Dy, = diag(wi n, ..., WK n)-
Since this is generally unknown, in order to show that our proposed tests consistently differentiates
the null from the alternative whenever we have strong identification (under fixed instruments), un-
der minimal assumptions, we begin by showing some intermediate asymptotic properties pertaining
to the critical value (2.8).

Lemma 4.1. Suppose Assumption 1, 2, 4 holds and we are under fized K. Assume (2.7) holds
and consider any estimator @1(50) satisfying (2.12). Then for fized A we have

i ®1(80)
\/?Ze[] (O) —Op(l)

\/2 > iclK] w;, +1/df

Under the alternative, for fixed K, the limiting distribution of the critical value Ca,df(tfl(ﬁo))

(see (2.8) for its expression) becomes that of a weighted chi-square F iimi-distribution. Given that

the limit w"™" is unknown in practice, in order to discuss the power properties of our test, one
straightforward method is to find the worst-case power property, i.e. we want to examine the values
of wlmit = (wlimit wlimity guch that ||w'™||p = 1, W™t > 0 and qi_o(F,imit) is the largest

it can be. We have the following result due to Fleiss (1971):

Lemma 4.2. For any vector a € R for some fized dimension K such that ZiG[K] a; =1 and each

a; > 0, we have
g1-a(xX) > q1-a Z agx? ¢
LEK]
where the Xif are independent chi-squares with one-degree-of-freedom

Note that for fixed K, by expression (A.20), Lemma 4.1 and 4.2, we can obtain an upper bound

for the power of our test under the worst-case scenario’s power

P (QB0) > m-a0*(1) + 0p(1)) £ P (Q(Bo) > t1-a(Fi,) + Op(1))

Combining lemmas 4.1 and 4.2, we can show that our test consistently differentiates the null from
the alternative. The requirement is that the concentration parameter ji2 diverges to infinity. This
requirement is similar to Mikusheva and Sun (2022)[Theorem 1] (this was established for diverging
instruments), which shows that for any set of bounded concentration parameter, there is no test

that can consistently differentiate the null from the alternative. This result is formally given as:
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Theorem 6. Suppose Assumption 1, 2, 4, (2.7) holds and we are under fired K. For any estimator
:151(60) that satisfies (2.12), our test consistently differentiates the null from alternative, i.e.

lim P (Q(B0) > Caar(®1(50))) =1

and

lim lim P (f(ﬁo,cil(ﬁo)) > cﬁdes(cil(ﬁo),c)) —1

n—00 B—o00
for any fived A # 0, whenever fi2 — oco.

To simplify the discussion for the power properties of the remaining cases, we assume without
loss of generality that under weak identification, ux = 1,'? while under strong identification,
dnpixe = fi, where i € R¥ is some constant. Denote Q*(8p) := lim,, o, Q2(Bo) defined in (2.6). We

have the following result:

Theorem 7. Suppose Assumption 1, 2, 4, (2.7) holds and we are under fized K. Furthermore,

let % = O(1) and suppose *(Bo) is well-defined. Then under strong-identification and local

alternative, for any estimator &)1(50) that satisfies (2.12),

lim P (Q(80) > Caar(®1(50))) =P (ZK (A7) @ (50) 2k (S(0)A7) > q1a<Fw*>>

n—00

and

lim lim P (B0, ®1(80)) > Oy (B1(50). £)) = P (zK (A7) (802 (S(0A7) > q1a<Fw*>)

n—00 B—oo
where w* = (w7, ..., wj) are the eigenvalues of *(By).

Note that w; > 0 and >, (w; = 1. We can diagonalize Q*(5y) = Q"' D*Q" such that
Q*Q*/ = Q*/Q* = Ik, with D* = diag(wy, ...,w}). Then we can express the asymptotic power

under strong-identification and local alternative as
Pl Y. wid M) >aqa | Y wixi,
i€[K] ic[K]

where M; := A2 (L,Q*¥(0))? is the non-centrality parameter, by which the power of the test depends

on. Furthermore, we can show that our proposed tests (i.e. analytical and bootstrap-based tests)

9Under weak identification, pyux = fz — F° € R. This implies that prx must be bounded. By Bolzano-
Weierstrass, for every sub-sequence of ik, there exists a further sub-sequence pr,; that converges to p, where
w1 = 1i?. Therefore, instead of arguing along sub-sequences, the simplification that px = [ allows us to argue along
the full sequence.
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have certain desirable properties; in particular, our tests are admissible within some class of tests.
Consider the test

Gaw =19 D wixi (M) >qia | Y wixig
€[K] 1€[K]
Then we have the following result due to Marden (1982):

Corollary 4.1. Let ®, be the class of size-« tests for Hy : My = ... = Mg = 0 constructed based

on K independent chi-squares (Xl,i’ e Xl,K)' Then ¢+ 15 an admissible test within .

Corollary 4.1 relates back to Theorem 7 in the sense that our proposed tests are admissible
over the class of tests that are based on X% or some combination of independent chi-squares (not
necessarily a linear combination), under strong-identification and local-alternative. Finally, we can

express the asymptotic power of our tests under weak-identification and fixed alternative as follows:

Theorem 8. Suppose Assumption 1, 2, 4, (2.7) holds and we are under fized K. Assume Q*(Bo)
is well-defined and consider any estimator ‘/Isl(ﬁo) EN ®1(6p). Then under weak-identification and
fized alternative, if we further assume that II'Il = O(1), we have

i P (Q60) > Caur @1(60) =P (2 (2B)) 2 (60)2 (S@I7) > 0-alFur))

and

n—o0 B—oo

o~ A ~ ~ N\ -
lim lim P (J(ﬁo,cbl(ﬁo)) > CﬁdeS@l(ﬁo),c)) —P <ZK (E(A)@ O (Bo) Zx (E(A)u> > ql_a(Fw*))
where w* are the eigenvalues of Q*(By). In particular, if we assume I MII < % — 0, then 51(&))
can be taken as ;I\D{ (Bo) for € = {standard,cf} given in section 2.5.

Note that the assumption of II'TI = O(1) automatically implies weak-identification for fixed K.
To see this, observe that WPAT,

7'Z
= N/K,U'K < )\ma:c(QZZ) : N/K ( n

> HEK = )\max(QZZ)H/PH < Amaac(QZZ) : H/H,

so that 12 < C for some constant C' < 0o. As before, we can re-write the asymptotic power given

in Theorem 8 as

ZwX1z >Q1 « Zw:Xiz

1€[K] i€[K]
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where M; := AQ(L;Q*Z(E);?)Q is the non-centrality parameter. This ensures that our tests have
power strictly greater than «. The asymptotic rejection criteria for both our tests can be written

as

ga,w*:zl ZwX17, >q16¥ ZwX1z

1€[K] 1€[K]

Analogous to Theorem 7, we have the result that under weak-identification and fixed-alternative,

our tests are admissible within some class of tests. This follows from the following corollary.

Corollary 4.2. Let ®, be the class of size-a tests for Hy : My = ... = Mg = 0 constructed based
on K independent chi-squares (Xii, e X% ). Then acuw* is an admissible test within ®.

5 Rank-Deficiency and High-Dimensional Instruments

In this section we explore the problem of rank-deficiency in instruments (i.e. Z is not full-ranked).
Under such rank-deficiency, the projection matrix P := Z(Z'Z)~'Z’ is not well-defined. To over-

come this, we consider the ridged-projection-matrix defined as

P, :=2(Z'Z +vIx)'Z

n *

for some (sequence of) 7, > 0. Following Dovi, Kock, and Mavroeidis (2023), we set the parameter

Y to equal

Y —maxargmaxg E U%

r
mEL R ‘]751

where 'y, := {y, € R: 7y, > 0ifr = Kand~, > v > 0ifr < K} and r := Rank(Z). We
make the additional assumption to ensure that v exists. In fact, whenever assumption 2 holds,
assumption 5 will automatically hold,?® so that assumption 5 is seen as a “generalized” version of

the balanced-design assumption (i.e. p, < < 1).

Assumption 5 (Assumption 3 of Dovi et al. (2023)). There exists constants ¢,y— > 0 not depending

on n, some h > 1 and some sequence v, € [7,00) such that

Z l] In 2 CT

i€[n] j#i

where y =0 ifr=K and ¥ =~v_ ifr < K

29Tn particular, we simply require p, < § < 1 from assumption 2. See the proof of Proposition 1 in Dovi et al.
(2023)
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Recall from sections 2.3-2.5 that the estimators involved depend on the number of instruments
K. The reason is that we assumed the instruments have full rank (i.e. » = K). When instrument
rank is deficient, we should focus instead on the rank of the instruments. In particular, we should
replace P and K by P, and r respectively in the previous sections. Note that under these changes,
our proposed analytical and bootstrap-based tests will once again control for size, even if the number
of instruments exceed the sample-size. For clarity of exposition, we provide details of the testing

procedure as well as its asymptotic properties in Appendix E

Remark 2. Note that in section 2 we assumed that Z is of full-rank. This assumption implies that
the number of instruments must be less than the sample size (i.e. K < n). Throughout the rest of
section 5, however, we do not make such assumption. Instead, we focus on the rank-deficiency of
partialled-out instrument Z. This allows for the number of instruments to be much larger than the

sample size (i.e. K >>n), which includes the high-dimensional case.

6 Simulation and Application

In this section, we compare the difference in power and size between existing tests and our test,
under two different data generating processes (DGP). To begin, we explicitly define these tests and

their corresponding critical-values.

6.1 Description of Tests

We consider the following tests, letting df = (n — K)/2, dfps = (n — K)/(3 log(n — K)), law L
following a Rademacher distribution (i.e. equal probability of —1 and 1), and a = 0.05 (i.e. 95%

confidence level):

(1) Our proposed test using the standard estimator which rejects whenever

Q(Bo) > Coar (D7 %(5y))

(2) Our proposed test using the cross-fit estimator, which rejects whenever

Q(Bo) > Caar (¥ (o))
(3) The Jackknifed AR-statistic for diverging K provided by Mikusheva and Sun (2022), which
rejects whenever
1

T Z sz’jei(ﬁo)ej(ﬁo) > qi—a (N(0,1));
o/ (Bo)VE icpn) i
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(4) The standard estimator for diverging K by Crudu et al. (2021) which rejects whenever

1
— Z Zpi'ei(ﬁo)e'(ﬂo) > q1-a (N(0,1));
q)itandard(ﬂo), /K ieln] j#i ! ’

(5) The classical AR-statistic for fixed K, i.e. we reject whenever
15-1 2 o =1/2 0 6 Lo o 2
J QT > qi—a(X%), where Jp, :=n""*Z"e(By) and Qy, := ;Z {diag(e1(Bo), .-, €, (P0))} Z

(6) The Jackknifed-AR for fixed K and homoskedastic errors given by Mikusheva and Sun (2022)[Sup-

plementary Appendix, Lemma S4.1], which rejects whenever

! xx% — K
————— > > Pyei(Bo)e;(fo) > q1-a (K) :
o (Bo)VK icln) i#i ’ ’ V2K

(7) The bootstrapped-based test using @fmnd‘"d(ﬂo) as variance estimator, which rejects whenever

J(Bo, Bt d(50)) > CB . (BF5(Bo), L)

(8) The bootstrapped-based test using Eﬁf (Bo) as variance estimator, which rejects whenever
(B0, B (B0)) > Claps (B7° (o). £)

We denote the tests (1)7 (2)7 (3)7 (4)’ (5)7 (6)7 (7)7 (8) by Qstandarda cha ARcfa ARstandarda ARclassicab
JARhomo, Jstandard and J.y respectively.

6.2 Simulation Based on Hausman, Newey, Woutersen, Chao, and Swanson
(2012)

We consider the following model based on the DGP given by Hausman et al. (2012), with sample
size n = 400, and vary the number of instruments K € {1,2,3,4,5,6,8, 10, 15, 20, 40, 100, 200, 300}.
Let

Y=pX+W +D,U;
X =7mgz1 + Us
W=(1,..,1) eRrR"

— p?
2 + 0.86%

21 ~ N(0.5,1), vy ~ z13(Beta(0.5,0.5) — 0.5), wa; ~ N(0,0.86%),

Uy =pUs + (¢U1 + 0.862}2),
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D, = diag(\/l + 22, \/1 + 2215 s \/1 +22))
Us; ~ exponential(0.2) — 5, ¢ =0.3, p; =03

We assume that the errors across different i are independent. Furthermore, z; = (211, 221, .-+, 2n1)
are independent from any error terms, and wx € R is chosen to be such that the identification
strength is small; since the value of K affects identification strength, we have different values of
7wy for different instruments. We consider values of mx such that for each K, the concentration
parameter C ~ 70.2! The diagonal matrix D,; allows U; to be dependent on z; but at the same
time has variance bounded away from zero, in the event some elements of z; are close to zero. We

assume § =0 and =1 to be the true parameters.
The ith instrument observation for K > 6 is given by
2 3 _4 5
Zi = (210, 214 2155 210 214> 216 Dit, ooy 21:Di K —5),

where D € {0,1} is a dummy variable with P(D;; = 1) = 1/2, so that Z; € RK. For K <5, the

7th instrument observation is

7l :=zy for K=1,

Z( = (zﬂ,zig) for K = 2,

7 = (Zil,zig,zilzn) for K = 3,

Z: = (Zil,ZiQ,ZilZiQ,Z?l) fOI‘ K = 4,

Z: = (Zﬂ,ZZ‘Q,ZﬂZZ'Q,ZZZl,ZZZg) fOI‘ K = 5,

zi2 ~ N(0.5,1) independent of z;;

Note that 29 := (212, 222, ..., 2n2)’ does not affect the DGP, so that in some sense it is a ‘spurious’
instrument. It is added for smaller instruments to ensure that the C in assumption 3 is not too
large. We conduct 1,000 simulation replications to obtain stable results and detail the probability

of rejection under the null of 8 = §y in the following table.

Table 1 provides the probability of rejection under the null for different values of K; we make
four observations. First, the ARgiundard sSuffers from size issues when the number of instruments is

small-moderate. Our corresponding proposed tests Qstandard and Jstandard resolves this. Second,

21We used the command ‘set.seed(1)’ for our simulation in R programming so that Z can be pinned down without
changing. After this was done, we calibrated the value of 7 so that C := % = 70 for each K, where

Py := P — diag(P) and P := MW Z(Z'MW 2)"*(M")Z'. Note that m changes with K. Furthermore, through
extensive simulation, the results will not change much when C changes by a little, say £20.
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Table 1: Rejection Probability under Null

ARgtandard  Qstandard ARcp Qe ARclassicat  JARhomo Jstandard  Jef

(5%) (5%) (5%)  (5%) (5%) (5%) (5%) (5%)

K=1 | 0072 0.06 0072 0061 006 0.062 0.06 0.6

K=2 0.079 0.054 0.08 0.055 0.046 0.054 0.048 0.049

K=3 0.066 0.048 0.07 0.053 0.044 0.053 0.047 0.044

K=1 0.08 0.058 0.086 0.065 0.052 0.068 0.052 0.053

K=5 0.077 0.05 0.083 0.056 0.059 0.06 0.049 0.048

K=6 0.08 0.061 0.128 0.099 0.053 0.098 0.059 0.061

K =38 0.073 0.047 0.106  0.08 0.049 0.082 0.056 0.06

K =10 0.073 0.05 0.098 0.082 0.047 0.081 0.051 0.055
K =15 0.083 0.054 0.111 0.089 0.039 0.087 0.057 0.062
K =20 0.07 0.048 0.10  0.069 0.04 0.079 0.051 0.052
K =40 0.062 0.041 0.092 0.061 0.023 0.074 0.047 0.048
K =100 0.048 0.035 0.075 0.058 0.001 0.068 0.046 0.045
K =200 0.059 0.043 0.103 0.086 0 0.098 0.056 0.061
K =300 0.066 0.065 0.134 0.131 0 0.125 0.056 0.067

Note: We reject at the 95% confidence-level, i.e. a = 0.05

severe size distortion also occurs for AR.; under small-moderate amount of instruments;?? our
corresponding analytical test (). tries to resolve this, albeit partially successful. However, notice
that Q. reduces the size distortion by about 20% —30%. The bootstrap-based cross-fit test J.s has
more success in that size-distortion is mostly negligible, even when its counterpart AR.; experiences
severe size-distortion. Third, the classical AR-test for fixed instruments AR ussica; generally does
not suffer size-distortion for any number of instruments; however, we will see that it suffers from
substantial power decline when the number of instruments is larger, say K > 6, as seen from Figure
4-8. Finally, JAR}omo suffers from size-distortion even for small instruments, say K = 3. This
is to be expected since the critical value of JARomo is based on homoskedastic errors, while the

errors of the DGP are heteroskedastic.

In order to obtain a fair power-comparison between the tests due to size-distortion, for each

given K we compute the (1 — a)-quantile of each distribution under the null. We then reject the

22The size-distortion of AR, persists even under large K (say K > 200) due to p, := max; P;; being very close to
one (it is roughly 0.992 in the simulation when K = 300). Recall from Theorem C.0.2 that one of the key assumptions
in assuring ®$f(8,) satisfies (2.12) is that p, < d < 1 for some § > 0. Note that even though this assumption was
made in Theorem C.0.1, it is actually not needed for the consistency of :ffm"d”d(ﬂo), which explains why ARstandard
has reasonable size for larger K.
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tests whenever the test-statistic is greater than this null-computed quantile, i.e. we compute the

size-corrected power.??
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Figure 2: Power curve for K = 1,2
Note: The red-line with downward-pointing triangle represents Qgtandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents ARgqundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.

23Note that these null-computed quantiles are in general infeasible in the sense that they cannot be constructed
without knowing the true DGP and parameters
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Figure 3: Power curve for K = 3,4
Note: The red-line with downward-pointing triangle represents Qgiandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents AR qundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.
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Figure 4: Power curve for K = 5,6
Note: The red-line with downward-pointing triangle represents Qgiandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents ARgqundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.
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Figure 5: Power curve for K = 8,10
Note: The red-line with downward-pointing triangle represents Qgiandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents AR qundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.
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Figure 6: Power curve for K = 15,20
Note: The red-line with downward-pointing triangle represents Qgiandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents ARgqundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.

28



K =40 K =100

10 - ¥~ Q_standard
AR

B 10 e
F=—e  °77 . ETETRT T —w
.,
-~
L J .
~
x
// - 0s 1
~

0.6 -

0B - H I

T

0.6 -

Probabilty of refection of Hy fy=0

~.
-
RS
-
. =0
o4 B 04 - N
. M e
St sv
N s *\
\C > F,
8, . %
0z N, 02 - ~x N
= N \x *\
T T ~. - T
—— - 7 N A8
\\\\\ _ - \X\ﬁs /
00 00
> 16 12 08 04 o 02  os 112 as > > 16 12 o8 04 o 02  os 112 as >
B B

Figure 7: Power curve for K = 40, 100
Note: The red-line with downward-pointing triangle represents Qgiandard; the yellow-line with a
upward-pointing triangle represents AR.; the purple-line with a cross represents ()..r; the green line
with a colored-circle represents AR qundard; the blue dotted line with diamond represents J ARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jgtandard; the dark-red dotted line with asterisk represents J.r. The horizontal dotted black
line represents 5%-level.
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Figure 8: Power curve for K = 200, 300
Note: The red-line with downward-pointing triangle represents Q)siandard; the yellow-line with a
upward-pointing triangle represents AR, r; the purple-line with a cross represents ().; the green line
with a colored-circle represents A Rgiqndard; the blue dotted line with diamond represents JARpomo;
the black dotted line with an ‘x’ represents AR jqssical; the orange-line with a colored-square repre-
sents Jsiandard; the dark-red dotted line with asterisk represents .J.r. The horizontal dotted black
line represents 5%-level.

Figures 2-8 plot the size-adjusted power curve for the aforementioned tests; we highlight five

observations. First, our four proposed tests Qstandard, @cfs Jstandara and J.p have generally similar
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power over different number of instruments, which is expected as their rejection rate are asymp-
totically equal under every alternative. Second, the size-adjusted power of our proposed tests is
at least as good as the well-known estimators ARgsandard, ARcp, ARclassical and JARpomo over
varying numbers of instruments. Third, for moderate to large number of instruments (say K > 6),
the power of the AR j4ssical 18 comparatively lower than all other tests. Fourth, when the number

of instruments is large, the power curves for AR.; and JAR},m, are similar because the two tests

2 _

differ only in the critical value used (i.e. q1_o(N(0,1)) for the former and ql_a(X%) for the
2 _

latter). As K — oo, XK K N(0,1), so that eventually, for larger instruments, the rejection rate

V2K
of these two tests should be equal. Finally, for very large instruments (K = 200, 300), the size-

adjusted power of Qstandard and @y are approximately equal, and dominates the other tests. The
power of ARgtandard is approximately equal to Jsiandard, While the power of AR s is approximately

equal to J.¢.

6.3 Empirical Application

In this section, we consider the linear IV regression with underlying specification based on Angrist
and Krueger (1991), using the full original dataset.?* In particular, we consider the 1980s census of
329,509 men born in 1930-1939 based on Angrist and Krueger’s (1991) dataset. The model follows
Mikusheva and Sun (2022), which can be written explicitly as

38
In W; = Constant + HZTC + Z YOB,; & + Z POB; sns + BE; + i (6.1)
c=30 $#56
38
E; = Constant + H/ A+ Y YOB;cpic + ¥ POB; o5 + Zik + i
c=30 s#56

where W; is the weekly wage, E; is the education of the i-th individual, H; is a vector of covariates,?®
Y OB, . is a dummy variable indicating whether the individual was born in year ¢ = {30, 31, ..., 39},
while QOB; ; is a dummy variable indicating whether the individual was born in quarter-of-birth
j€{1,2,3,4}. POB, is the dummy variable indicating whether the individual was born in state
s € {51 states}.?® Both ~; and ¢; are the error terms. We consider twenty-one varying numbers of

instruments; in particular,

K = {3,10,20, 30, 50, 100, 150, 180, 200, 250, 300, 350, 400, 450, 600, 765, 918, 1071, 1224, 1377, 1530},

24The dataset can be downloaded from MIT Economics, Angrist Data, Archive,
https://economics.mit.edu/faculty /angrist /datal /data/angkrul991.

25The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT, WNOCENT,
SOATL, ESOCENT, WSOCENT, and MT.

26The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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so that Z; i varies with K. Specifically, we have

3
Ziz =Y QOB ;d;,

j=1
1 39 3 39
Zijo = Z Z QOB,; ;YOB; bj¢, ..., Zi3z0 = Z Z QOB; ;YOB; :0j,
7j=1c¢=30 j=1c¢=30
1 3
Zi,50 = Z Z QOBz ]POBz 35] EZREN z 150 = Z Z QOBi,jPOBz’,s(Sj,Sa
j= 187556 j=1 s#£56
3 39
z 180 — Z Z QOBz ]POBz 55j st Z Z QOBz jYOBZ 60] ()
j=1 s#£56 j=1¢=30
33 38
Zisoo =Y, Y YOB;;POB; QOB jtbc s, -, Ziaso = Y »_ YOB; ;POB; QOB jif s,
¢=30 s#56 ¢=30 s#56
38 3
Zigoo =Y, > YOB;;POB; s+ Y Y QOB;;POB; ;s
c=30 s#56 j=1 s#£56

34 3
Zizs=»_ Y. > QOBi;YOB; POB; s, ...

¢=30 j=1 56{51 states}

z 1071 = Z Z Z QOBz jYOB’L cPOBz 351 c,s

c¢=30 j=1 se{51 states}

The coefficient § is the return to education. We vary this  across 1,000 equidistant grid-points
from -0.5 to 0.5 (i.e., 8 € {-0.5,—0.499, —0.498, ...,0, ...,0.499,0.5}) and solve for the range of g
where the null hypothesis cannot be rejected, according to section 6.1. Specifically, we can write

the above model as

InW; =C;I'+ BE; +; (62)
E;, = Cit+ 2,0 + ¢, (6.3)

where C; is a (329,509x71)-matrix of controls containing the first four terms on the right-hand of
(6.1). We can then partial out the controls C; by multiplying each equation (6.2) and (6.3) by the

residual matrix I — C(CTC)™'CT to obtain a form analogous to that in the main text:

E:X16+ela
Xi =1L +v;
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Then, at each grid-point we take Sy = 8 and compute ARgandards Qstandard ARcf, Qcfs ARclassical
and JARpomo. We reject the chosen value of By for if it exceeds the one-sided 5%-quantile of
the corresponding critical-value (i.e. o = 0.05 with the tests and their critical-value described in
Section 6.1). Note that the full QOB,Y OB, POB or their interactions are not used in order to

avoid multicollinearity. We report the upper and lower bounds of the confidence set for which the

null cannot be rejected in Table 2 below.

Table 2: Confidence Interval

ARstandard Qstandard ARcassical JARpomo Jstandard
(5%) (5%) (5%) (5%) (5%)

K =3 | [0.056,0.147] [0.052,0.151] [0.053,0.151] [0.052,0.151] _ [0.04,0.166]
K =10 | [0.007,0.16] [-0.011,0.165] [-0.011,0.166] [-0.011,0.165] [-0.051,0.211]
K =20 | [0.017,0.174] [0.015,0.178] [0.014,0.18] _ [0.014,0.178] _ [-0.037,0.25]
K =30 [0,0.169] [-0.002,0.172] [-0.002,0.177] [-0.002,0.172] [-0.068,0.254]
K =50 | [0.005,0.183] [0.002,0.188] [-0.01,0.188] [0.002,0.188]  [-0.186,0.5]
K =100 | [0.018,02] [0.017,0.202] [0.009,0.203] [0.017,0.202] [-0.097,0.429]
K =150 [0.023,0.208] [0.022,0.21] [0.022,0.212] [0.022,0.21] [-0.156,0.5]
K =180 | [0.008,0.201] [0.007,0.202] [0.007,0.207] _[0.007,0.202]

K =200 | [0.216,0.23] [-0.223,0.233] [-0.214,0.236] [-0.224,0.233]
K =250 | [-0.118,0.258] [-0.122,0.261] [-0.111,0.256] [-0.122,0.261]
K =300 | [0.097,024] [-0.1,0.242] [-0.085,0.238]  [-0.1,0.242]

K =350 | [-0.107,028] [-0.11,0.283] [-0.092,0.274]  [-0.11,0.283]
K =400 | [[0.078,0.305] [-0.081,0.308] [-0.058,0.298] [-0.081,0.308]
K =450 | [-0.105,0.29] [-0.107,0.293] [-0.092,0.281] [-0.107,0.293]
K =600 | [[0.018,0.228] [-0.019,0.220] [-0.013,0.224] [-0.019,0.229]
K =765 | [0.09,0.192] [0.093,0.194] [0.125,0.163] [-0.092,0.194]
K =918 | [10.055,0.182] [-0.058,0.183] [-0.076,0.157] [-0.056,0.183]
K = 1071 | [0.042,0.19] [-0.044,0.192] [-0.064,0.168] [-0.042,0.191]
K =1224

K =1377

K = 1530

Note: We reject at the 95% confidence-level, i.e. a = 0.05

We have omitted AR.f, Qs and J.; from the Table 2 because the confidence interval of these

tests are either very similar or exactly the same as ARgstandard, @standard @0d Jstandard respectively.
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Therefore, we can speak of the confidence interval (C.I) for the aforementioned tests interchangeably
(e.g. when we mention the C.I. of AR.f, we also mean the C.I. of ARgtqndarqd). We now make a few
observations, which we discuss in detail. First of all, recall from Table 1 that the size-control for
Q.y was slightly distorted due to p, being extremely close to one, a requirement for the validity of
the cross-fit variance estimator </I\>§f (Bo)- In this empirical application p,, is bounded away from one,
so that Qstandara and Q. should be expected to be close to each other. In fact, we can also expect
the C.I. of ARandara to be close to AR,y over all values of instruments, which holds true. Second,
the C.I. of AR jussical 18 quite different from all other statistics for larger instruments, which is to
be expected since AR jqssical 18 meant for testing under fixed instruments. However, notice that the
C.I. of Qstandara (and therefore Q.¢) is close to ARcjgssicar for smaller instruments, while Qsandard
differs from ARgqndara (and AR.y) at these values, which suggests that the C.I. for both AR andard
and AR s may not be valid for smaller instruments. For large instruments (say K > 350), the C.I.
of Qstandard (and Q.y) converges to that of ARgandara (and AR.y). We can therefore see that our
proposed test ensures that the C.I. we obtain is correct. Third, JARpomo’s C.I. converges to that
of AR.; as the number of instruments increase. This is expected since the test JARomo converges

to AR.r as K — 0.

Fourth, comparing Q.r and JARpom, for small instruments, we see that their C.I. are very
similar. We can infer from this that the data seems to be exhibiting homoskedastic variance.
This requires some explanation. Consider a fixed A not necessarily zero. Note that under some

additional assumptions, we can show that under fixed K, WPA1, we have®”
||wy, — wy|| ~ 0

This implies that WPA1, Fz ~» F,, approximately. Under homoskedasticity, w;, = %, so that

2
F, = XTK Therefore, WPA1 approximately,

q1—a(Fz) — 1 S Xk /K -1 0 <x§(—K)
~ — —Q

By rearrangement, the rejection criteria for (). becomes: reject whenever

1 Z ~ _o(Fz)—1 X% — K
wan ez e e ) T vaR

2772
A2

T Puc? o) =~ 0, then we can see that this

*"In particular, if we impose the additional assumption that max;e/,

result follows from Lemma B.3
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Furthermore, recall that the rejection criteria for JARpomo 1S given as

L R )@() — 1) > e (B =E)
- 1264 0 0) — -\ — —
K& (Bo) iefn) V2K

We therefore conclude that under homoskedasticity, for fixed K, the rejection rate of Q.r and
JARpomo should be approximately equal. Since the C.I. of both tests are similar, we can infer
somewhat that the variance is homoskedastic. As a form of robustness check, note that ARqssical
and J A Rpomo has similar C.1. for small K, where we recall AR jqssical 18 robust to heteroskedasticity
under fixed K. This further confirms our intuition. To summarize point four, our proposed tests

Qstandara and Q¢ can serve to check for homoskedastic variance.
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A Proofs for Main text

A.1 Proof of Theorem 1

Zie[n] 21 0iPijbj

For any vector a,b € R", we define Q, := TR

We will first prove the first part of Theorem 1. This is done in Step 1-Step 4. The proof of
the second part of Theorem 1 is shown in Step 5.

Recall that e = ¢+ PWe¢ and € = ¢ + P"¢, so that we have

Qee = Qzz +2Qz pwe + Qpwe pwe
QS,E = QE,E + 2Q5,PW5 + QPWE,PWE (Al)

We want to strongly approximate these two equations. It is instructive to first provide an outline
for our proof before delving into it. To do so, consider a sequence of independent random variables
{(¥;}, with the criteria that

(i) E¥; =0
(it) E[97] = E[ef] = E[¢]]
(231) {(V;}i=; is independent of {€;};; and {&;}i;

Such a sequence will always exist by the Kolmogorov-Extension-Theorem. This sequence will be
used throughout the proof. We define 9 := (94, ...,9,)".

The idea of the proof is to express

. ndy
Qe,e — Qe e = Remaindery, + Op(%) (A.2)

2
The term ‘Remaindery,’ collects all the difference in terms that cannot be collected as Op(%)—
2

terms. To be precise, step 1 will imply that Qpwz pwe— Qpw. pw, = Op(%), so that this term
is collected in the last term of the right-hand-side of (A.2). In step 2 we deal with the difference
between the middle-term on the right-side of (A.1), which implies that
Pudiy
2Q@pve — 2Q. pw. = Hn + Op(m)
where H,, := —ﬁ Zie[n] E#i P”PZ‘JV {eie; — 9:9;}. Thus M, goes into the ‘Remainder,’ term of

2
(A.2), with the remaining terms collected as Op(i’;f/‘g’ )-terms. In step 3 we deal with the first term

on the right-side of (A.2) (i.e. Qzz — Q:) and note that this term goes into ‘Remainder,’. We
will then collect all the terms in ‘Remainder,’ and strongly approximate these terms. Specifically,
Wwe can express

Remainder,, = F,, — Fy,
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where

Qee_ \/» ZZP Pwezej,

i€[n] j#£i

Fn = Qe — \/» Z ZPiiPZ'I;'VEigj

i€[n] j#£i

and we strongly-approximate these two terms. Note that F), is the part of the terms in ‘ Remainder,,’
that belongs to Q¢ ., while F;, belongs to Q¢ ¢. Step 4 puts everything together and completes the
proof for the first part of Theorem 1. Step 5 completes the proof for the second part of Theorem
1.

Step 1: We show that for any

pndyy,
Qpwepwe — Qpwy pwy = Op(iKl/g )
pndiy,
Qpwepwe — Qpwy pwy = Op(iKl/Q ) (A.3)

Consider first a sequence of independent random variables {U; }7"_; with bounded first and second
moments. Furthermore, let {U }, be independent random variables, as well as independent from
{U;}™_,. Suppose that the EU; = EU; and EU? = EU? for every i € [n]. We will show that

pnds
Qpwypwy — Qpwir pwi = Op( KJZ) (A.4)
Note that PPW = 0, so that
1
Qpwy pw :—UPWPPWU——E:P” PYYU}? = EjP,, (P U2
PYUPYU \/R \/>z€[n] { } \/> { }

with U := (Uy, ..., Uy,)". Denoting U} := U; — EU;, U := U; — EU;, we have

(Qpwu.pwy — Qpw pws) = fzpu( (PYYU* + (P EU)? - [(PiW>'z7*+<P,-W>’EUT)

i€[n]
— \ﬁ > PP YU Z Pi[(PVYU \ﬁ > Py(PV)U (P )EU
i€[n] i€[n]

\ﬁ > PP YUH(PVYEU = Cr+ Co+ C35 4+ Cy

1€[n]
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By the fact that EU* = 0,

= T X I = e SR S R e < G 5 5

€ln] Le(n] Ze[n Le[n]
_ Cpn pw — Cpndw
CVK &t KR

i€[n]

so that by Markov inequality, C; = Op(& "dW). In a similar manner, we can show that Cy =

K1/2
0] (1}?1/”2’) Next,

ECE < = 3" Pulwl(PYYEU - (PFYEU| S [P PH Var(U)
1,4/ €[n] L€[n]
O Cri ST R YEU (P YEUIS S (PY? ST PY
=K il il
i,i’€[n] Le[n] Le[n]
C’pn

Z\ (PVYEU - (PV)YEU|- P} Pl

C’ Cp?
p”ZZrP,ZVP PP = =230 S PP

il 0,0 le[n] i€ln]
2
@ Cpy, Cpn
< Na Z (Z(PJ?/V : Z(PZI’;V)2) Z Py dw)? 7‘1%[/
L€[n] i€[n] i€[n] Le[n]

. In a similar

where (i) and (ii) follows from Cauchy-Schwartz inequality. Hence C3 = Op(%f/%;’)

manner, Cy = Op(%), so that (A.4) follows. An application of (A.4) with (U,U) replaced by

(e,7) and (e,) yields the first and second equation of (A.3) respectively.

Step 2: We show that

pnd;
2Qz pwe — 2Qy pwy = HY \/» Z W (Ee; — 0:0;) = HP + Oy Kl}g)
i€[n]
2) Pudiy
2Q5,PW5 - 2Q19,PW19 = n \/> Z €Z‘€j - 79179]) =M, + Op( K1/2 ) (A.5)
i€[n]

where Hﬁf) = —\/% Zie[n] Zj# PiiPi‘;-V {CZ-(E)CJ(-Z) — 19ﬂ9j} and CZ-(Z) :=¢; or g; for £ =1 or 2 respec-
tively.

We first derive a general result: consider a sequence of independent random vectors {(Us, T D).
Suppose we have another sequence of independent random vectors {(UZ, T) * , such that for every

i € [n], EUs, T;) = E(U;,T;) and E[(U;, T;) (Ui, T;)'] = E[(U;, T;)(Us, T;)']. We assume the two se-
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quences are independent from each other, and that the first two moments are bounded. By noting
PVPpP =0,

Q —U’PWPT— — Pi(PYYU - Tj = ——— Pi(PYYU
PVUT — \/* \/* Z[;] ) Zez[;l]
1
=——> P, PYUT - PPV UT;,

which implies that

Pudy
Qewur — QpwiF = 4Jf§:§:BJM@NT+\/f§:§:RJﬂ@VT+O( =Y), (A6)
i€[n] j#i ] j#i

where the last equality follows from Markov inequality and

2

2
ZP“PWUT U Ty) ZPQPW (U;T; — U;T;)? <C"

Cpndw

ZE [n] ZE [TL]

If replace (Us, T;) with (&;,;), as well as (U;, T;) with (¢;,9;), then an application of (A.6) would
yield the first equation of (A.5). The second equation of (A.5) follows by replacing (U;, T;) with
(61‘,81‘) and (UZ',TZ‘) with (191‘,192').

Step 3: Define

Qee_\/»ZZPuP 62 and

i€[n] j#i

Qaa - \/» Z ZP”P@J 5i5j

i€[n] j#£i

We will show that there exists a random variable F}, < F» such that

1/3
ol + ol () >1/2dW] |

F,=F,+ 0, (A.7)

K1/2

Define g,(z) := max (0,1 - %ﬁ) and f,(z) := Egn(x + hy/N'), where N has a standard

normal distribution and h,, := % for some Cj, > 1. By Pollard (2001)[Theorem 10.18], f,(:) is
twice-continuously differentiable such that for all x,y,

3
Yy
ggym (A.8)

n

Fular +9) = ala) — 90 u(w) — 3570 ()
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and

— B(CW){z € A} < fu(z) < B(Cy) + (1 — B(Ch))1{z € A3}, (A.9)

1/2
where C}, := "  and B(Ch) = (#fz_l)) . Furthermore, define
h

Gy o) i Yiein) 2jeilaiPija; — 2P Pl aja;)}
n\Wly ..., Un) - \/E
so F, = Gy(e1,...,en) and F,, = Gn(e1,...,,). By triangle inequality,

|Efn(Fn) — Efu(Fn)l
<Y IEf(Gnl(@ry ooy Eir Eig1s s En)) — Efn(Gn(@1, s Eim1, 80y o)) (A.10)

i€[n]

where G, (g1, ...,€n, €nt1) = Gn(e1,...,en) and G, (o, €1, ..., €n) = Gn(€i,...,€,). Then consider the
last term of the telescoping sum. Define

Zze[n 1] Z]#l,]é[n 1]{6’LP1J€] - 2P”P glg]}

An—l = \/F

A 2én Zie[nq} €ilin B 2en Zie[nfl] PiiPz‘Yngi B 2Pnnén Zze[n 1] P €
" VK VK VK

X . 2enDiep &P 20 Sy Pilin @ 2Punn Vi1 Pin' @
" VK VK VK

so that G(€e1,...,en) = Ap + A1 and G (€1, ..., €p—1,6n) = A, + \_1. Further denote Z,,_; as
the o-field generated by {e;, €;};c[,—1) and observe that

E(A,|Z,-1) = E(An|Z,—1) and

E(Ainnfl) = E(Kinnfl),

so that together with (A.8), letting = = \,—1, y = A, and A, we have
[Efn(Gn(€1,....en)) — Efn(Gn(er, ... n—1,6n))|

_ - E|A,]? + E|A,)?

E0F () (B — A)| + S0 () (B2 - )4 E18nL T Sl
3 A |3

_ ElAq]” +EJA,]” (A11)

96,12

IN

We proceed to bound E|A,[3. Let {&i}icm—1) be a sequence of independent Rademacher random
variables. Using the simple inequality that |a + b|® < 2(a? +b?) - |a +b| < 8(|a|® + |b]?), we have by
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independence of the errors across i that

¢ E Z (Pm + Pu]DzI?L/ + PnnPZI?L/)’éZ (A.12)

E|A"|3 < K3/2
i€[n]

Denoting 6; as either Pj,¢;, PiiPiI;LVa or PmPg;ngi, we have

3

E[ > 6 <8E > 6 (<)8/ PP > 0G| >t dt

1€[n—1] 1€[n—1] i€[n—1]

—SE/ 2P Z 0;&| >t
0 i€fn—1]

3/2 3/4
(iv) v)

<CE( > 6 <CE(Y ) (A.13)

i€[n—1] i€[n—1]

(423) oo 1 t2
To1 | dt < 16E/ erp(— =
0 Zze[

)dt
i€[n—1] 0;

—~

where (i) follows from the Symmetrization Lemma of Van der Vaart and Wellner (1996)[Lemma
2.3.1]; (it) follows from the integral identity; (iii) follows from Hoeffding’s inequality (see Van der
Vaart and Wellner (1996)[Lemma 2.2.7]); (iv) follows from the change of variable s = 2/ D icin-1] 02;
(v) follows from Holder’s inequality. Note that for 6; = P;,¢;,

ECY. =Y Y E@i<cdy S PEPE=CP2,

i€[n—1] i€[n—1] je[n—1] i€[n] j€[n]
so that
3/4
(>, 6 <cPy?
i€[n—1]

Similarly we can obtain

3/4
E( Y 67 < C(poPYV)3? it 0; = PyPVe; and
i€[n—1]
3/4
E( Y 67 < C(Pu P32 it 0; = PPV
i€[n—1]

Hence, by (A.12) and (A.13), we have

3/2 3/2
E|5 |3 < CPm/‘ pn/ (Prlz/g)s/2 + (Pnnpgi)gp.
nl = K3/2
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Similarly, we have

3/2 3/2
g, < Pt P B & (PP
nl = K3/2

In general, for any generic jth term, we can show that

P3/2 ?1/2 PW 3/2+ PPW 3/2
Efu(Gn (@1 s ) — Efa(Gn(@1y s Enrren))| < O 2 Fs) Fiity;)

K325, 12
C ( 1/2 + 3/2( )1/2d ) 1/3
where the constant C' is independent of n. By (A.10), letting h,, := | =22 me 1 and
recalling 9,, = Chh” , we have
P.3./2—|—p§l/2 PW 3/2 / 3/2 1/2d
K3/25,h2 K1/25nh% C?

Therefore, by (A.9) we have

P{F, € A}

IN

—B(Cr) — 1-B(Ch)
1
S 12BC)

= P{fn € A35”} +

EnFn 1 C
1 f ( ) < (Efn(fn)"i_q%)

<B(Ch) +(1 - B(Cn)P {]—"n € A35”} + CC%)

B(Ch) 02
1— B(Ch)

By Strassen’s Theorem (see Pollard (2001)[Theorem 10.8]),there exists a random variable F}, 2 Fn
such that

P ’Fn—fm > Ch

1/3
Ch(pr 1/2 +p3/2( )1/2dW) / _ B(Ch) + =
K1/2 ~— 1-B(Ch)

Fix any 7 > 0. Given that B(C}) — 0 whenever Cj, — oo, we can find a sufficiently large C}, such
B(Ch)+55

that TM

< 7, implying

‘Fn_]:;/z‘:O

(1/2+p3/2( )1/2d ) 1/3
K1/2 ’

o (A.7) is shown.

Step 4: We complete the proof. We can re-express

Qe,e:Fn+Rn
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and

QS,San+Rn

where F,,, F,, were defined in Step 3, so clearly R, = Q¢ — Fy; similarly R,, = Q¢ ¢ — F,. Define

n = - Z P“Pl‘;vﬁﬂ% + QPWﬁ,Pwﬁ

zE [n]

and note that by (A.3) and (A.5),

> pnd%/v

Rn - RTL = Op( K1/2 ) (A14)
and
> pnd%/v
R =R = Op( 5 75). (A.15)

Therefore, by noting that F,, F,, ﬁn are mutually independent, we have

Qee=Fy+Ry=F + (Fy—F.) 4 (Ry — Ry) + Ran

[ / 3/2 1/2,9 ] 1/3 2
o ~ + pr ( ) dw pndW
=F, +Rn+ O, 1/ + 2

[ / 3/2 1/29 ] 1/3 2
d 5 + Pn ( ) dw pndw
£ Fo+Ru+0, =17 + e

pL2 4 B2 12, 143 2
_ > + Pn ( ) dw pndW
=Fn+Ry—(Rn—Rp)+ 0, 172 +K1/2
1/3

e v o [P 2w | padiy
=Qee+0p K1/2 K1/2

where the second line of the preceding equation follows from (A.7) and (A.14); the last line follows
from (A.15). This gives the first result of Theorem 1.

Step 5: We prove the second part of the Theorem here. Note that by PV P =0,

e/Pe ePe 1 Qs Zie[n] Piié?
K - K - \/? e,e K 9
and similarly
&' PE > icin) Pies

1Q+
K VK ©F K
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Then

e Pi€;  Yiepn Pt} i

K K =0\ g

. P2 o P2 1/2
Zze[n] i Zze[n] i 9 Dn (Alﬁ)

K K P\ K1/2

which follows from

2
£ (Zie[n} Pi(e — 79?)) | Yie PAEE - 93)? _ Cpn Y iem Pii  Cpy

K K? - K? K

Then define J,, := ?/%g and 7, := ?/%E By repeating the proof of step 3, we can show that there
exists a random variable j,fb 4 J»n such that
p1/2
Jn =T + Op(”?). (A.17)

Putting everything together, we have

'P icin] Lii€; i Pii0? it Pid?
ere Jn+<26[] _Ze[] +Ze[]

K K K K
; 4 p..1912 1/2
W g, Zicw P (o
K K1/2
¢, S Pt (il
R S Ve
_epe ([ Siem Pt DiewPact\ | o (wil”
K K K P\ K

, 1/2
_epe o, (pn )
K K1/2

where (¢) follows from (A.16) and (A.17). This completes the proof of the second part of Theorem
1.

A.2 Proof of Theorem 2

Consider any sub-sequence \,, € A,,. We will show that for both fixed and diverging K,

n;lclinoo P)‘”k <Q\(50) > Ca,df((/I;l(BO))) = Q. (A.18)
Jimgim P (T(80, 81(80)) > Clly, o (875(80). £)) = a (A.19)
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Then (A.18) and (A.19) satisfy Assumption B* of Andrews, Cheng, and Guggenberger (2020).
By Corollary 2.1(c) of their paper, Theorem 2 follows. Without loss of generality, we implicitly
consider the sequence A, € A, and show that it satisfies (A.18) and (A.19). We break the proof
into two parts, part I and I, which deals with (A.18) and (A.19) respectively. For each part, we
deal with fixed and diverging instruments separately. We drop the dependence on 5j for notational
simplicity.

Part I:

Fixed K case: Consider first when K is fixed. We can write the rejection criteria (2.8) as

®1(Bo)
7= e Pie} (Bo)

\/ QEZE[K] wz n + ]‘/df

We denote Q(By) as @n(Po) to reflect its relationship to the sample size n. Under the null,
by Theorem D.1.1 and Lemma B.3, we know that for any sub-sequence n;, there exists a further
sub-sequence n;, such that

Q(Bo) > q1-a(Fz,) + (@1-a(Fg,) — 1)

~1 (A.20)

ank BU Z w; Xlz =: Xw* (A21)

€[K]

where the chi-squares are independent with one degree of freedom. Furthermore, Fy, =~ ~ X2«

Ik
since @njk By wr by Lemma B.3. By arguing along sub-sequences, we can assume without loss of

generality that the above convergence is in terms of a full sequence, i.e. w, P w* and w, — w*.
This is because if for any sub-sequence we can show size-control for a further sub-sequence, then
size-control holds for the entire sequence. Note that

(@) Nwallt- (O Puo})® = trace(U'AUU'AU) = > Y~ Plojo;

i€[n] i€[n] j€[n]
(6) Y Plof <T'puK =o(1)
i€[n]
~ (i) (m’) 2
© & 2o, +o0,1) Y Z > PEGIGT 4 0p(1) = e >N Ploiol +0,(1)
ze[n] J#i i€[n] j€[n]
Z B,z €; Z) ! Z -PZZU + Op
zG[n] 16 [n]

where (i) follows from our assumption of consistent estimator; (ii) from the second part of Theorem
C.0.1; (iii) follows from (b); (iv) follows from Lemma B.1. Then from (d) we have

1
77 Licin) P07 e Yiem Pio? e Diep Pio?

D,
= = =1,
T= Lici Pi€ % iew D€ & Liem Piof + op(1)

()
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and from (c) we have

(/I\)l . \J % Zze[n] Zje[n PZJJZU + Op( )

- 1
\/% Zie[n] Zje[n] Pfj%?“? K Zie[n] Zje{n]

Putting it together,

= V2+ op(1)
Pwal U]

B E Yie Ve Poot] g e Pao? By
1 2 1 - ] — -
VR Ll v et Fi: 7 2t Picl & S e Photo?

_()\/K ZE[" JEN]PZJGZUJ

\/Zze [n] Z]E[n] szaz J]

(14 0p(1)) (V2 + 0p(1)) = op(1)
\/E Eze[n] PZZUi Zze[n] P“g
< V2w + 0p(1) = V|| + 0p(1), (A22)
so that since @, = w* and w, — w*,
Py
%Zien P“62 p \/ﬁHw*H _
V2 e WE,, + 1/df 2| Jw*|]

as % = 0(1). Therefore,

51

Zz ”62
(@1-a(Fz) — 1) 75 il 1| = (@1—a(Fu) — 1+ 0p(1))0,(1) = 0,(1),

\/2 e @ w;, +1/df

so we can write (A.20) as
)

1 2
= 2icin Fii€;
G1-o(Fa,) + (@—a(Fg,) — 1) Uil

By Van der Vaart and Wellner (1996)[Example 1.4.7],
o,
\/% 2 iein] Piie}

Q(BO) q1— oz( ) + (q1—a<Fﬁ7n) - 1)

— — 1~ QI—a(Yi}*)
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from which an application of Theorem 1.3.6 from the same reference yields

$,
Pj;e?

Ve
Q(Bo) — q1—a(Fz,) — (q1-a(Fg,) — 1) VR e — 1|~ X2 — q1ma(3%0);

/2 D icir) Wi, + 1/df

applying Theorem 1.3.4(vi) of the same reference yields

P,
. pay — Zz n P“e?
lim Py, | Q(Bo) — a1-a(Fz,) = (@1-a(Fg,) — 1) e ~1[>0
/22 icik) Wi, + 1/ df
=P (X5 > q1-a(Xor)) =
We have therefore shown that for fixed K, (A.18) is satisfied.
Diverging K: assume now that K — co. By Theorem D.2.1 we have
1 E P..e2 R
VEZ 0 (Q(B0) — 1) = Qe ~ N (0,1) (A.23)

b

Next, define T := o ({win}i_1),~; to be the sigma-field generated by the sequence of random

variables w;,, and s2 := 2 Zie[ K] w?,. Conditioning on Z, we have

Var(Fg, —1|T)=E [ > @ia(xi; - 1) | = s (A.24)
1€[K]

Additionally, we have

2
C max; w;

lim = 0. (A.25)

2
K—oo Zie [n] Win

To see (A.25), note that max; w;,, = 0p(1) by Lemma B.3. Furthermore, Zie[K} Wiy = 1 by
construction. Let max; w;, = 0y for some 0 < 0y < 1. Denote i* to be the index such that
Wi p, = MAX; Wy . AS ZZ#Z Wiy =1 — 0y, we have

_ L, _ 1— 0, (1= )2
D Wi =D Wi+ Wiy =D W 03> Y () 05 = e 6,
i€[n] ii* ii* it

so that
max; ﬁzn B 02 02 1

—5 = 2 = 1-00)2 = — °();
Zz‘e[n} Win Zz‘e[n] Win 934‘% 1+ e(g(KO—)l)
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where the last equality follows from recalling Lemma B.3, i.e. 63 = max; {an = 0p(K 1), so that

(1—6p)2  1+40(1) 1+4o0(1)
O5(K —1) 65K —1)  o(1)

— 00

Thus, by (A.25) we can obtain

c Zze[n} iﬁfn C'max; 7172271 ic[n) W ~2
hm — E(Win (X i — 1)< lim —EM P < lim ——
54 Ez[fj(] 1 K—oo S% K—oo (ZZE[K} win)Q
C'max; @?n
= lim ———— =0. (A.26)

Since the Lyapunov condition (A.24) and (A.26) is satisfied, by the Lyapunov Central Limit The-
orem, conditional on Z we have

Fy —1 W V2 > ielk] Uin Fy —1
V2 e Win T U/ df )23 W+ LA ()23 B

= (1 -+ 0p(1)) i

-1
L — N(0,1). (A.27)
\/2 Zie[m Win
where (i) follows from observing that 1 =3¢ (5 Win < [|wn|| VK by cauchy-schwartz inequality,

so that =1 HF 7 < ‘fl; = o(1) by assumption. Since the distributional convergence in (A.27) holds
for any sequence wj ,,, then it must hold unconditionally by Lemma B.4. Hence, asymptotically, by
(A.23) we have exact a-level size control whenever

1 2
Tz 2ic) Fiiei Fg, —1
VK clr] (Q(ﬁO) - 1) > (l—a —n

o, V22 iek] Wi, +1/df

We can rearrange this rejection criteria as

~

~ P, F@n —1
Q(BO) >1+ LZ Poo2 l—a s = adf( (50))
VK 2wi€ln] Lii€ 2 Zie[K} w;, + 1/df

implying that we have exact asymptotic size control for K — oo. By an application of Van der
Vaart and Wellner (1996)[Example 1.4.7, Theorem 1.3.6, Theorem 1.3.4(vi)], as was done previously
for the fixed K case, we have (A.18). The proof of part I is complete.

Part I1: We can first establish that for any fixed sample size n, conditioning on data, for any
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z €R,

ZEE[B] 1 {jBS’Z < z}
B

Dicn] 2o Digning
K®75" (Bo)

~

<z|P (A.28)

= )

B

as B — oo, where we drop the dependence of JBSL on (e(Bo), L, o, (Bo)) for notational simplicity; TN
and P, (+|P) means convergence in probability and probability measure under the law £ conditioning

. d
on the data, respectively; @Bsn(ﬁo) 2 Zle[n Z#Z Pfj 3(50)%@0)% random variables {n; }ic[n) ~
L. First observe that @Bse(ﬁo) 2 @?S"(Bo) by E(n:le;) = 0, Var(nile;) = e2, and the assumption

that <I>1(ﬂ0) satisfies (2.12). Second, observe that {jBS’Z}Z 5 are i.i.d., so that (A.28) follows
€

from the law of large numbers.

Fixed K case: Consider first when K is fixed. As in part I, we assume without loss of
generality that w, P w* and w, — w* instead of over a sub-sequence. Since W, B wr implies
some sub-sequence converges almost-surely, we can assume @, — w* over the full Note that

~ > icpn) Pii€} (@Qs(Bo) =1)  Q(Bo) — 1 w* )
J(Bo, ® = = top(l) = > —=—(xi,— 1) (A.29
(BO I(BO)) Kaj\)l \/5”’(1]*“ Op( ) e \/iH’U)*H(XL ) ( )

where the last equality follows from recalling from Part I that

VE®,

> : ]P--e2 = \/§HUJ*|| +0p(1)
1€n] 1ty

for the fixed K case; the weak convergence follows from (A.21). Next, we will show that P-almost
surely, for any z € R,

=~ Zze[n] Z];éz U]

P, <z

P| =P Z\fllw*\l( ~1)<z (A.30)

as n — oo. Conditional on data, Py, -almost surely we have
D icin] 2ujti Pljnlnj el Pin? ( nPn 1)
2
\/chBS X KBS (50) \ 2icln Pl

(Z:') Zze[n] 13“7712 Z ~BS 1

BSn ' znxlz
K& (Bo) \ielK]

i @Bs
Z fl\w H —1) 4+ 0p(1)

+ 05(1)

o1



where (i) follows from Theorem 1 adapted to conditioning on data?, w2 : (wlB;f ;. w[B(*S;L) are

(Z'AnZ)l/Q(Z'Z)fl(Z/AnZ)l/Q
Yicn Puni

Zie[ P“nz
Ko7 (Bo)

the eigenvalues of and A, := diag(n?, ...,n%); (i) follows from

= V2||@|| + 05(1) = V2[[w*|| + 0p(1),

which is analogous to (A.22); (¢i7) follows from Lemma B.3 adapted to the conditioned data, where
there exists for every sub-sequence n; a further sub-sequence nj, such that under the null

and we can assume without loss of generality that this holds under the full sequence. This proves
(A.30). Finally, by Vaart (1998)[Lemma 21.2], (A.30) implies

Zi nZ' i Pignin D
e e e R PO
K& 7" (o) ie[k) VA

-1,
so that conditioning on data and combining with (A.28) yields, WPA1 (with respect to law L)

w'LTL
lim lim C’adeS((I)l(ﬁo) L)=q—q Z 7’()(%,@'_1) )

n—o00 B—o0o

noting that dfps = o(1). The preceding equation holds P, -almost surely, so that by bounded
convergence theorem,

lim lim Py, (f(/ao,@l(ﬁo)) > cgdfss@l(ﬁo),c)) —a

n—o00 B—o0o

This completes the proof of the fixed K case.

Diverging K: assume now that K — oco. Then by Chao et al. (2012)[Lemma A2],

T(Bo, 1(Bo)) ~ N (0,1) (A.31)

28 Although Theorem 1 requires the fourth moment to be bounded from above, we note that supien €f < oo
with probability greater than 1 — ¢ for any € > 0. Therefore, following the arguments later on, we can

prove a version of (A.19), that is a(1 —¢) < liminfn, oo limp—oo Pa,,, (j(ﬁo,il(ﬁo)) > C8 yos (:15{35(50),12)) <

limsup,, _, o limp—o Px,, (.7(,30,51\)1(60)) > Cﬁdes(ff>FS(ﬂo),£)) < a(l —¢€) +e. since € > 0 was arbitrary, we

have (A.19) itself. Hence we can assume without loss of generality that sup;en e} < oo with probability one.
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Furthermore, by applying Chao et al. (2012)[Lemma A2] conditioned on data, we have?

= Xiem) 2252 Pigning
PL BSn
K& (Bo)

~

< z|P

2P (N(0,1) < 2), (A.32)

so that combining with (A.31), (A.28), using bounded convergence theorem and dfps = o(1) yields

lim Tim Py, (780, B1(80)) > Colgy s (B1(50), £)) = a

n—o00 B—oo

This completes the proof for the diverging K case.

A.3 Proof of Theorem 3

We first prove the first part of the statment. Note that (A.27) holds for any sequence of A,, — AT
not necessarily zero, i.e.

F-~

wn—l

V2 Y ierr) Win + 1/df

Furthermore, our rejection criteria for the test under diverging K can be rewritten as

- = Fy 1
Piiez(Bo) (Q(Bo) — 1) > v/ ®1(Bo) - q1-a L (A.34)
fleg[:z ( ) 221‘6[[(] 1257;2,71 +1/df

- N(0,1) (A.33)

By (2.12), noting that

*ZZ%E %<f2 o),

i€[n] j#i i,j€[n]

the estimator 51(50) = Op(1). Therefore the right-hand-side of (A.34) is an Op(1) term. The
left-hand-side of (A.34) diverges to infinity for C — oo and fixed A # 0 by Theorem D.2.2. The
result of the first statement thus follow. For the second part of the statement, note that (A.32)
holds even under the alternative. Therefore, by (A.28), (A.32) and dfps = o(1), we have that
P-almost surely,

lim lim C5 deS(@l(ﬁo) L) )% q1-a(N(0,1)).

n—00 B—oo

Combining with the fact that

J(Bo, ®1(Bo)) =

mg:‘ﬂaze (50) (Q(B0) — 1) B o

Note that the following equation holds true for any sequence of A, — A" not necessarily zero, as long as
<I>1(An) N '1>1(AT)7 where we have rewritten the dependence of '1>1( ) on A, instead of By, so that o is seen as
“moving” in this case.
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by Theorem D.2.2 yields the second statement.

A.4 Proof of Theorem 4
By Theorem D.2.2,

A%C
50) —1)~N <<I)1(ﬁ0)71>

Z we 50
m )

Therefore, by (A.33), for fixed A and any estimator </1[31(ﬂ0) L ®1(8).

lim P (Bo > Co.df q)l(ﬁo)))

Fy —1
= lim P — Z Piie?(B0)(Q(Bo) — 1) > q1-q =t
00 ( \/mze[n] V2 e @+ 1/df
®1(Bo)
A2C
=1-F|q_oN(0,1)) - ——
<q1 (WN(0,1)) <I>1(Bo)>

Noting that A = Aand C=C completes the first part of the proof. For the second part of the
proof, it only remains to show that, P-almost surely,

~ AQC
lim lim C o L)L g o N —=,1 .
=00 B—00 des( 1(B0), £) = @1 ( ( (%) ))
But this follows directly from (A.28), (A.32) and dfps = o(1). Finally, we show that

(/I\)itandard(ﬁo) £> (I)l(/BO)u (A.35)
&5/ (o) B @1(Bo).- (A.36)

in order to complete the last part of the proof. Recall from section 2.5 that

Dstandard Z ZPQ 2A2H2 2 /BO) + A4HZ2H]2) =0
zE[n] JF#i

by the assumption that LI — 0, 02(5y) < C and > jeln] P,Z = P; < 1. By (2.12) we have (A.35).
Furthermore, by II' MTI < I 0, (A.36) follows from Mikusheva and Sun (2022)[Theorem 3].
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A.5 Proof of Theorem 5

Note that ®1(8y) = ®1(80) by (2.12) and A — 0. Furthermore, \/§12(C,80) = \/éf(czio) +0o(1) =

A2C
©1(Bo)

, so that by Theorem D.2.2 we have

K%
Piie; (50)(Q(Bo) = 1) » N | 7572~ 1
T 2 V()
Finally, by (A.33) we have

lim P (Q(Bo) > Coar(®1(0)))

= lim P

Fs; —1
E .P“€ ﬁﬂ ) ) > q1—a ( n — ))
B (\/ K®(Bo) ich) 23 e Wi + 1/df

:1—F<q1 o(N(0, 1))—825)>

This proves the first part of the statement. For the second part of the statement, it only remains
to show that, P-almost surely,

~ 2
lim lim CB deS(<I>1(50) L)L g, (N (AC,1>>,

=00 Byoo ®1(So)
which follows directly from (A.28), (A.32) and dfps = o(1).

A.6 Proof of Lemma 4.1

The proof is similar to the proof of Theorem 2. For completeness we will include the proof here.
Note that

(@) lwallf- (Y Puc?(Bo))* = Y Phot(Bo)os(Bo)

i€n] i,j€[n]
(b)Y Pioi(fo) < Cpuk = o(1)
1€[n]
(c) ®1(Bo) = Z ZPf] a2(Bo ﬂo) + D(A) by assumption of (2.12)
ze[n} J#i

Hence
B1(B) (o \F Diew S PR3 (B0)a2(5o) + Op(1) v
== [0)
=2 iein) Pl (Bo) = Lict Piio? (Bo) + Op(1) 8
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L Sl [l + Op(1) < V2| D, + Ail|p + V2| Ast] [+ Op(1)

D /3| Duy, + Antllr + Op(1)

where (i) follows from (c) and Lemma B.1; A g is defined in Lemma B.3 and D,,,,, := diag(w1 pn, ..., Wk n);

ALY P2II2I12
i1) follows from ||Ag||% = [|Qg(Bo)||% = Zijein P LT < ACK < C. Furthermore, we have
F F CK
by Lemma B.3

Y ieix) Piioi (Bo)

D@, — Dy — Anllr = 0p(1)
where Dy, := diag(w p, ..., Wk ), SO that
[wn|lp = (D@, — Dn — An) + Ax + Dullp = [[Ag + Dallr + 0p(1)
Putting it together we have

©1(fo) ®1(5o)
71? 2icln) Piie?(Bo) \/% 2icln) Piie?(Bo) < \/iHDn + AH| ’F + Op(l)

V2 i W+ 1df 2l @all% 1A \2l@all% + L/df

_ V2|| Dy, + An||r + Op(1)
V2||Ar + DallF + 0p(1)

514+ 0,(1) = 0,(1)
which completes the proof.

A.7 Proof of Lemma 4.2
We require a Theorem by Fleiss (1971):

Theorem 9. (Fleiss (1971)) Let {X%m}fil be a sequence of mutually independent chi-squares with
n;-degrees of freedom. Define

to be the ratio of chi-squares. Then for any non-negative constants a1, .., ax, conditional on {Ti}fil,

z : iXngi 1 XZiE[K] ng
i€[p]

where ¢ 1= ZiG[K] a;T;

We denote Fy := {w € Q: Ty = mingepTy } for every ¢ € [K]; furthermore P(Urerrg Fo) = 1
and P((",e(x) F¢) = 0. Then for any chosen non-negative (a1, ..., ax) such that >,y ar =1 and
for any x € Ry, we have

P(xi1<znFil{Ti}lex) =E (1X§’1§x1}"1|{T€}€€[K]) =17P (xi1 < el{Te}eeix)
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; (4)
Q1aP (Mg <o) < 15P [ S aly v <o
LE[K]
(i)
= 17P | Y and, < al{Tieir | =P | D aexis < 20 Fl{Ti}en
(€K Ce[K]

where (i) and (é¢7) follows from Theorem 9; (ii) follows from the fact that whenever w € Fi,
T < Zée[K} aeTy since Zée[}(] apy = 1. Taking expectation on both sides of the equation yield

P(X%,l < :L'ﬂ]:l) <P Z CLZX%Z <zNFH
Le[K]

Note that {fg}ge[ &) are mutually disjoint except on a null set. Therefore

(#44)
Poii<z) < D POdi<enF) <D P D and,<anF | =P D anxi, <z
i€[K] 1€[K] Le[K] Le[K]

where (iii) follows from 1]:ixii <1rx3, and

P(xi, <) = Z P(xl,<znF)< Z P(xi,<znF).
1€[K] 1€[K]

Hence we can conclude that the distribution function of a chi-square is smaller than that of a
weighted-chi-square. This implies that

01-a(X3) = q1-a( D anxiy)
LEK]

A.8 Proof of Theorem 6

We begin by establishing some results: later on we will show that for any sequence of A, — Af
with AT finite,

nTV2(Z2) (2 n0)) - (I, TN (0,3(A) (A.37)
where B(AT) :=lim,, o % Eie[n] Ao,i(Ay) ® Z; Z!. Furthermore, By := [y, (since A,, is allowed to

change) so that [y is allowed to change with n; however we drop the notational dependence on n
and understand that this implicitly holds. Then we can obtain

e(Bo) Pe(Bo)
/ —1

= (n"V2Z2'e+ Apn V220 + Apn V2 2L (ZZ) (n~Y22'¢ + Ayn™ V225 + Apn~ V22D
n

s (I, TN (0, B(AN) + AT Y Q (I, I )N (0, S(AY)) + Al ) (A.38)
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To show (A.38), note that by assumption 4 we have

72 ((Zie)), (A Zi0)) (Zi&), (A Zi0:)") ZAM ) ® ZiZ! — S(AD).

ze [n]

Furthermore, for every n > 0

1 - ~ ~ ~
- > E{(Zi&i, AnZin)|[F 1 |(Zies, AnZiti)| | > nv/n}} = 0.

i€[n]

The preceding equation follows from
(E{I1(Zi&, AnZio)|F1{1[(Zi, AnZin)||p > m/n}}
< BNz Az P (n 2z An 2] 2 )
Yo+ alp (n—l/QH(zia», AnZi)||F > 77) +o(1)

(#4d) 12 E(72 52 2 )2

where (i) follows from Cauchy-Schwartz inequality and (i7) follows from sup; E||(Zi€;, A Zi0;)||3 <
2sup; || Zi||% - E(e} + AZ5}) < O(1 + A2) < O(1+ A2) + 0o(1) < oo, by assumption 2 and 4; (i)
follows from Markov-inequality. We can then apply the Lindeberg-Feller Central-Limit-Theorem
to obtain (A.38). Furthermore, note that

-1

Y Picl(Bo) | = C(1+ AT+ AR 4 0,(1) (A.39)

1€[n]

for some C' > 0. To see (A.39), first denote o?(Af) := ZQ(BO) where AT = 3 — By. Then observe
that

S Pac2()) 2 7 > Piio} (Bo) + ZP“H +op(1+ Ap)

1€[n] ZE[”] Ze[”]

—~

i) 1
=% > Puot(Bo) + A maxTT; + op(1 + Ay)
i€[n]

(iii) )

< C(1+Ay) +CAL +op(1+ Ay)

<O+ A, +A2) +o,(14+A)

W o+ AT+ AR) 4 o,(1)
where (i) follows from Lemma B.1; (i) follows from } ;¢ Pii = K (iii) follows from max; o2(By) <
max; (7 + A%LQ? +2A,7;) < C(1 + A,) and max; IT? < II'Il < C; for (iv), note that o,(1 + A,,) —
0p(1 + AT) = 0,(1); hence (A.39) is shown. We are now ready to prove our result.
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Let A,, = AT = A. Then
(I, I)N (0, %) + Apg = dyyt (dn (I, It )N (0, %) + Adpixc) = dy* (0p(1) + Adyppire)
so that WPAL,

(0p(1) + Adppr ) Q5 (0p(1) + Adnpir) > mineig(Qy) - Ad2 py puxc
= mineig(Q,y) - A*d22 = mineig(Qy) - A*i* > 0.

Therefore, WPA1, the last line of (A.38) diverges to oo, as d,;! — oco. By (A.38) and (A.39) we
have

Q(Bo) = Ce(Bo)' Pe(Bo) + 0(1) = oo,
Furthermore, by lemma 4.2 we know that g1 (F3,) = Op(1); by lemma 4.1 and (A.20), we have

@1 (Bo)
= Liefm) Piie (Bo)

V2 2iclk] w;, +1/df

—1

P (Q(B0) > Car(®1(50))) = P | QB0) > a1-a(Fi,) + (@1-a(Fz,) = 1)

=P (Q50) > 0,(1)) =1

This completes the proof for the first part for the statement of Theorem 6. For the second part,
WPAL,

T (B0, B1(80)) = —=—== " Puc?(Bo) (Q(Bo) = 1) = o0 (A.40)

A/ K(I)l(ﬁ()) i€[n]

by @(ﬁo) — oo and WPAL,

Zze[n Pue (/80) Z Zze[n] PZlU'LQ(BO) (g) QZ’LG[’H] PZZ C\/>
K&, (5o) Kdi(p)  VEG S Ve

V=

where (i) follows from Lemma B.1; (i) follows from assumption 2 and ®;(8y) < C4 for some Cy > 0
WPAL1. Furthermore, by (A.28) and (A.32), P-almost surely,

lim lim CZ, (®1(8),L )gq N A7261
n—00 B—oo Afps A ETV0 e ‘1>1(ﬁ0)7 ’

so that combining with (A.40) yields the second statement of Theorem 6.
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A.9 Proof of Theorem 7
Note that we have dyux = p and A = A, = dnﬁ — 0. Then by (A.37), A, 127'5 = op(1),

whence
YAV
n

-1
e(Bo) Pe(Bo) = (n~'2Z'e+ Ayn~ 2 Z'T1)! ( ) (n='2Z2'€ + A2 Z'T) + 0,(1)

. !/
= (n"V2Z2'e + AR (an

-1
) 2T A o)

Furthermore, by Lemma B.1, p, H[/(H = O(1) and A — 0, we have

1
7ZP116 ?Z-Pnaf( +Op ZR%U +Op
i€[n] i€[n] ze[n]

where (3 is the true parameter. Therefore we have
-1 ~
( 1/2Z/6+AM) (Z Z) (n—1/2Z/f6v+ Aﬁ)
ien) Pii0?
~ !/ ~
- ((Z’AOZ)_1/22’5+ (n_1Z’AOZ)_1/2A[Z> Q(B) ((Z’AOZ)_1/2Z’€+ (n_IZ’AOZ)‘I/ZAﬁ) +o0,(1)

@(BO) + 0p(1)

- (N(o, Ix) + Z(O)Aﬁ) /Q*(ﬁ) (N(o, Ix) + 2(0)3,1) = Zx (z(O)M)' O (B) 2k (z(oﬂg)
(A.41)

where Q(f) is defined in (2.6), Ao := diag(Ao,1, ..., Ao,n) and the convergence follows from (A.37)
and Q*(B) := limy, 00 Q(5). Next, we deal with the critical value. If we show that

V/®1(Bo)

T%Eze[n] Pzze (60) D

=1, (A.42)
/22 i) @ w;, +1/df

Wy, — W and

then by (A.41) and (A.20) we can obtain

n—oo

lim P (@(/30) > ca,df@l(ﬁo))) —p (ZK (2(0)&,7)' O (B) 2k (2(0)&,7) > g1_a(Fu- )> ,

which completes the first part of the proof. Note that by Lemma B.1, since A — 0, we have

ZZP%UZ J+OP 1)

zE [n] j#i
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Repeating the proof of Lemma 4.1 yields

NED
= Lict Pie} (Bo)

= V2|[wallp + 0p(1)

By Lemma B.3 we have that

Nin_ n2: 1
gﬁgﬁ(w, wn)” = 0p(1)

Finally,

®1(Bo)

- OP( )_ ~ + 'D
V2t T+ A 2@+ 1/df V2|l

where the last equality follows by recalling from (A.27) that

|||

@+ el

Therefore, together with the assumption that w, — w* (which holds as lim, - Q2(8y) — Q2*(5)),
(A.42) is shown. This proves the first statement of the theorem. To prove the second part of the
theorem, note that ®1(8y) = ®1(8) by (2.12). Furthermore, observe that by (A.41) and Lemma
B.1,

~ ~ 1 ~ Zie[n] PiiUiQ(ﬁo) ~
J(Bo, @1(B0)) = ———= > _ Pici(Bo) (Q(Bo) — 1) = Q(Bo) — 1) +op(1)
0, F1LV0 Kzl;l(ﬁ(]) zez[;] 0 ( 0 ) K(I)l(ﬁ()) < ’ )

~ !/

Zx (S(0)AF) 0 (8)2k (S(0)AF) -1
V2| |

- ﬂulwnn (QB0) — 1) +0p(1) =

(A.43)

where the last equality follows from the proof of Lemma 4.1. Finally, by (A.28) and (A.30) we have
P-almost surely,

. . B = D, w; 2
lim Bh_lgo Codfps(®1(B0), £) = q1-a ;} W(Xu -1,
ielK

so that combing with (A.43) yields the second statement of Theorem 7.

A.10 Proof of Corollary 4.1

The result is a straightforward application of Marden (1982)[Theorem 2.1], by observing that the
acceptance region A := {(ai,...,ax) € Rff : Zie[K] a;w; < QI—a(Zie[K] w;“x%z)} is convex and
monotone decreasing in the sense that if (ay,...,ax) € A and b; < a; for all 4, then b € A
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A.11 Proof of Theorem 8:

We prove the first statement of Theorem 8 first. Begin by noting that A = A and g = p. Defining

~ N2
A, = n=V2 72 4 An=12275, V) = EALAL and Y, = = el Pl

Zie[ 110 (ﬁ()) we have

(i) (An + 1) (Z2)~Y (A, + Fi)
D it Piio? (Bo) + A2 32,y Pully + 0p(1)
(i) ( "A(Bo) PA(Bo)Z
S icpn Pio?(Bo) + A2 ey Pall?
1y 172+ Z'N(Bo)PA(Bo)Z
=14+, 1 an/QAn+an/2lu/
( I ) Dien) Piio? (Bo)
D14 27 (V2 VPR Q) (Vi A+ V2 70) + 0p(1)

S 2 (MO, 1) + SRR 9 (Bo) (N0, Tie) + £(R)7) (A.44)

Q(6o)

V, A+ V) (V2 A0 + V2 00) 4 0p(1)

(Vi 28, + VY210 + 0,(1)

where (7) follows from Lemma B.1; (i7) follows by recalling that
A(Bo) = diag (5% + 285 + A22), .., (2 + 287, + B2 )

(7i7) follows from definition (2.6); (iv) follows from (A.37). To deal with the critical-value, note
that by Lemma B.3 we have that

in — Wn — AH 2= 1
g%(w w z,n) Op( )

so that

A2 Pill2
>iet Piio? (Bo)
= |lwnl|F + Yo + 2w, AT + 0,(1) (A.45)

[ [F = [Jwn + AT[[F + 0p(1) = [Jwal[F + + 2w, A" +0p(1)

where AT = (A - )\gn) is defined in Lemma B.3. Furthermore,

(/I\)l(ﬁO) (3) \/K i€[n] Ej;éz z]Uz (50) (60)
LZ PH€2(5 ) = 5 + 0p(1)
VE £=i€[n] © 1% \F0 \/E Zig[n] Pzzaz </80) 7= Zie[n] Py 115

(i) \/% >ijem Fhos (50) %(6o) o)
% > icin) Pyia7(Bo) + 7 Yieln] P12
\/K i,j€[n] szgz BO)U (Bo)
\/7226[”] PMU (BO)
82 z:ze[n] P“H
Yicn Piio? (Bo)

(iii) V2[|wn||F
oyt @ V2l

1+
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where (i) follows from Lemma B.1 and (¢) in the proof of Lemma 4.1; (i7) follows from (b) in the
proof of Lemma 4.1; (iii) follows from (a) in the proof of Lemma 4.1. Therefore we have

V®1(8o)

Tz Siep Pieei(B0)  (9) ||wallp
— = +op(1)
V2 et @+ 1/ (14 V) ((llwal b+ Do+ 20, A +1/df)
@ [lwle +0p(1). (A.46)

VIl + 20 Ay
where (7) follows from (A.45); (ii) follows from ||w, — w*||Fr = o(1), 1/df = o(1), and

Y, = A2 2 icin] Pyl (Zi) A%p, 2icn) 2 _ A?p,IT'TT (iv)
" Zie[n] PzzUZQ(/BO) B Zie[n} Fii K

(é) follows from o?(8p) > C > 0 by assumption 2, (iv) follows from II'Il = O(1) and 22 = o(1)
by assumption 2. Furthermore, we can show that

o(1);

n

Ay =(n"12'2) (n=12'2)7Y? 0, (A.47)

which follows from

/ " A2
. (Z HnZ) = A2) % > ZizIm | < % > Amax (Z:Z]T17)
1€[n]

i€[n]

A? (i) '
< — Y I¥|Z]|% < CA’=— =0o(1
_nz NZillF < - o(1)

1€[n]

where (7) follows from sup; ||Z;||r < oo by assumption 4. Therefore, combining (A.46) and (A.47)
yields

@1(8o0)
\/% 2ieln] Pize3(Bo) 2

— =1 (A.48)
V2 Y ier) Win + 1/df

Finally, since A\, — 0 and max;e (] (@i, —wn — Al)? = 0,(1), we have ||, — wy||3 = 0,(1). This

implies

Chfa(Fﬁn) = Q1fa(Fwn) + Op(l) ﬁ* ‘hfa(Fw*)

In view of the preceding equation, (A.44), (A.48) and (2.9), we have the first statement of Theorem
8. For the second statement, note that we just showed

1 (o)
= Lict Piie} (Bo)

— V2l[w|| + 0p(1)
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Therefore by (A.44) and V,, = o(1), we have

1
J(Bo, ®1(Bo)) (f) 0 Z ( (Bo) — ) Vol || ( (Bo) — )+Op(1)

i€n
2k (@) @ () Z (SA)7) -1
V2wl
Next, by (A.28) and (A.30) we have P-almost surely,

(A.49)

—~ w:‘
lim lim CB deS(fbl(ﬁo) L)% qiq Z W(X%z -1,

n—o00 B—oo

so that combining with (A.49) yields the second statement of Theorem 8. Finally, the last part of
the theorem is shown in exactly the same way as the last part of the proof of Theorem 4.

A.12 Proof of Corollary 4.2
Repeat the proof of corollary 4.1 and replace M; by M; for each i

B Auxiliary Lemmas

Lemma B.1. Under Assumption 1 and 2, for any fived A := 3 — 5y not necessarily zero,

K Z Pne 60 K Z PMU BO Z PZZH2 + OP( )

i€[n] i€[n] i€[n]

where %2 2 icln] P12 = O,(A2%p, HI/{H)

Proof of Lemma B.1:
To begin, recall

o7 (Bo) = 6,° + A +2A%; (B.1)
Furthermore,

e2(Bo) = (e + AX:)? = (M)V)'E + AIL + Av;)?
= (MPYY&)? + 2ATL; (M) + 280, (M}V)'E + A2IT? + 2A%TLv; + A%0?
= Ai1 +20A; 0+ 20A; 5+ NP Ay + 207 A5+ A% A6 (B.2)

We will show that

LS Pl - <\/P7 f) (B.3)

i€[n]
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LS pidia - op<\/§>, (B.4)

i€[n]

S \/p” N B9
i€[n]

7 Z PzzA'L A4 = AQ K ) (BG)
ze[n]

1 Pn

? Z P“‘Aiﬁ = Op( ? —I—p%V) and (B7)
i€[n]

K Z iDn 2,6 — M \/ (BS)
i€[n]

Observe that

~ ~ 1 ~
7ZPH i1 — 2 Z]Du - 2_72312 ejel EZ'P“(ZPW

ze[n] 1€[n] jE[n 1€[n] JjE€[n]

=By + B2+ B3

By Markov inequality and
2

1

(Tne-m) <hrn

i€[n] i€[n]

we have that By = Op(4/5#). Since

E(By)? < <5 Z > PuPui Y Y P PYE@EEE)

ze[n i'€[n] jE€n] j'€ln]
= ﬁ Y P> N PYPTEEREE) el Z > PiPyy > Y P PVE@EEE;)
i€[n] j€[n] 3/ €[n] i€[n] i/ #i j€[n] 3/ €[n]
<@y Ry +7ZZPMBZ' P+ ()
il jeln) i
< Cp,/ (B.9)
we have By = O,(+1/p¥). Also,
_ 1 w w W _ w
EBs = - Z[:] Py ;](Pij )25 Z] PPy < Cp, =0(p, )
€|n VIS zEn

so that putting it all together yields (B.3). Next, we can express A;2 = Il;&; — H,;(PZ-W)’E =
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A;i21 + Ai22. By Markov inequality,

2
1 - C s _ Cpn Pn
E ?ZP“HZ& SEZPMS K :O(?)
’LG[TL] ’LG[TL]
and
2
1 C
174 Y Pidiga | < e > PPy, Y PP P < Cpy
i 1,J€[n] Len]

we obtain (B.4). For (B.5), observe that v; = v; — 3_;cpy) PZI;V@ and M/e =¢; — > jeln] Pi?/'éj, S0
that

— Z P” i3 — % K Z Pzz ezvz 71 Z Piiv; Z

ze[n i€[n] ze[n] jE€n]
SO EDWILRES WA DT o
i€[n] J€[n] ZE["] JE[n] J€E[n]

= Bs + Bg+ B7 + By

Note Bs = Op(\/%) and Bs = O,(v/py) by
EB < 1 O 2

i€[n]
and
EB§ < Cp)Y
as in (B.9); the argument for By = O,(+/p¥) is analogous to Bg. Furthermore, by

EB2 < 03 3 PP S (R 4 S (R

1,1/ €[n] Jj€ln] j'€ln] Jj€ln] le[n

’L’L - n )2)

we have (B.5). Next, (B. 6) is obvious. For (B.7), noting that vivy = vivy+3 ey PV, > tein] P~
Zﬁe[n] Pill/lg/%% de w WUZ/, we have

1
Bl > Pidis)? = % > Pl PyyTyE(vivy)

ze[n] 1,3’ €[n]
C
el ZPEH%F > PallllPewlMa| Y [Py Pyl + 525 D> Pulllil Pew Tl [Py
1€[n] 4,1’ €[n] Le[n] 1,3’ €[n]
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< Ci Z Pzz + Z Pzzf)z/z’ Z Z (‘le’/‘él)2 + Cp}/zv

i€[n] 1,3/ €[n] £€n] £€[n]

Pn w w Pn 7%
<ctn — Ot
_CK+Cpn + Cp,, O(K—I-p )

n

Finally we deal with (B.8). Since v = 07 — 2 > jeln] Pi‘;vﬁiij + e Bij PY%;)2, we have
*ZPu 6= = L P - - X P Y PG+ 30 P PP
ZE[n i€[n] Jj€[n] 1€[n] J€E[n]

= By + Bio + B11

Observe By = Op(4/ %) by

2

Z PZZ ~2 §z) < % Z
1€[n]

zE[n
Furthermore, similar to (B.9) we have
EBT, < Cpy =0(p))
and
EBy < gg{;] P J%;](REV)Q <Cpl =0@pY)

This completes the proof of (B.8). By the assumption of 22 = o(1) and p})’ = o(1), each term from
(B.3)-(B.8) except (B.6) is 0p(1). Hence Lemma B.1 is shown.
O

Lemma B.2. Suppose Assumption 1 and 2 holds. Then for fired A not necessarily zero,

F DI ZZPZ R0 + o 3 3 P 0 + oy

i€[n] j#i n] j#i i€[n] j#i

Proof of Lemma B.2:
Step 1: We first show that

722 ij Z J ZZ ij z ] /60 +Op(1) (BlO)

i€[n] j#£i ze[n} VED

Note 0? = G2, so we can express

@ ol= (@ -oh) 23 Fiee+ (Y PYE

JEMN] JEM]
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=Ci1+ Cig+ Cis.

Therefore
2
1
E ?Z Pz% ?(ﬁO)( zl+012+0z3)
i€[n] j#i
| 3.3
=20 2 DD PiFi03 (o)) (Bo)E(CiiCire)

(=10

14,4 €[n] j#i j'#i

By

E
Mw

/

~
—
~
Il
—_

We will show that Bg o =o(1) for each ¢, ¢ € {1, 2,3}, which will complete the proof by Markov
inequality. First,

L2 1:1 KQ Z ZZ ij zj’a /80J (ﬁO) ( 110’1)

1,0/ €[n] j#i j'#i

C
7o Z >N P2P207(B0)0% (Bo)ECT < TPl = o(1)
i€n] j#i j'#i

where the inequality is from

EC?, =E(e] —57)* <Ee}+5; <C

7 —

Second,
Ki 12= 75 ST ST PP 0G0 (B)E@E — 52 S Pladn)
i’ €[n] j#1 j'#i ke[n]
< Y Y AR Ry < Y S Y PRL < Y = o),
i€[n] j#i j'#1 i€[n] j#i j'#1

Third, note that

Ciz =) (B’ +) > Py Pjea (B.11)

J#i JF kFiyg

SO

1 —
B =g S S PAR0R (G0 (B0)E | (& - 7S (P

1,4 E[n] jF1 ' #L k#i/
Z YD PiP0i(Bo)on(BoE | (€ —aD) (Y Y PhPuieer)
i, €[n] j#i §'#i k#i' k'#i k
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= 3 S S BP0 aod(BE | @ 3 (PR
1,0/ €[n] j#i j'#i k#£i!

<) S S SRR <l = o).

1,0/ €[n] j#i j'#i

Fourth, the proof that +Bs 1 = 0,(1) is analogous to that of % Bj 2 = 0,(1). Fifth, using the simple
inequality of |ab|] < $a* + b

% 2,2 = K2 Z ZZPZ%PM’U /800 Z kekel ZP/kzekez)

1,0’ €[n] j#I j'Fi ke[n] ke[n]
2
SKQZIZZIUHW@W (2 P &)
i’ €[n] jF#i j'F#i ke[n]
S K2 Z ZZPzQJPzQJ Z ) <Cpn = o(1).
i,i’€n] j#i §'#i ki
Sixth,
weln 2 3 S PRt 0 (X Pl ae) (Y (P
K2 - K2 ig* iy’ 0) ik €kEi)
1,8/ €[n] j#i j'#i k#£i kA
72 2 S5 Pl ictine (SRS S P
'€[n] jF#i j'F#i 0 ki’ k/#£i k
C
< 42 Z DD PPy (Bo)al(Bo) Pl
'€ln] j#£i j'#i
Z YD PiPoi (0o (B0) Y (1PY P PY |+ (PY)?IPY)
i'en] j#i §'F#i 122

< Cj{’g >SS rErE < cnll = of),

i3/ €[n] j#i j'#i

Seventh, the proof that +Bs; = o0,(1) is analogous to that of +B;3 = 0,(1). Eighth, that
+ B35 = 0,(1) is analogous to that of % Ba 3 = 0p(1). Finally, using 2|ab| < a? + b?,

C ~
aBs S0 3 S S PRPHE (3 RGP P

i,i’€[n] j#i j'#i keln|
S=DIDH WL AP Z PheY+ > X PR PAEL P
1,0/ €[n] j#i j'#i ken] k'e k€n] k'€n]
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Z ZZPE]PzQJ <Cpn) _0(1)

1,1 €[n] j#i §'#i

The proof of (B.10) is complete.

Step 2: We complete the proof.

Note that we can write e;(8p) = e? + AX(II? + v? + 2IL;v;) + 2Av;e; + 2ATIL;e;, so

(50) —0; (50) (6 — 0’ ) + AQ( &;,2) + 2AILv; + 2AILe; + 2A(Ui€i
Note that by the same proof as step 1, we have
722 UZJ ZZ gz JﬁO +Op(1)
i€[n] j#i ze[n} JFi
and
o 23 Phuieiat(Bo) = 1= 32 3 PRAio(50) + op(1)
i€[n] j#i ze[n} J#i
Finally, we will show that
& 23 Pho(Eie; = o,(1)
i€[n] j#i
and

— ZZP% o2(Bo)Iv; = 0p(1)

ze[n ] 3F#4

= %) + AL

(B.12)

(B.13)

(B.14)

(B.15)

We will only show (B.14) since (B.15) follows the same proof. By the inequality (a+b)? < 2a%+2b?

and e; = ¢; — (P}/V)'¢, we have

2
= S P (AL,
i€[n] j#£I
2 2
<2E ZZPEJ o2 (Bo)Iie; |+ 2E ZZP@ o2 (Bo)IL;(PV)'E
ze[n ] j#i lG[n] JF#i

where (i) follows from

Cp
> Pipy < =ol1)
i,5,5'€[n]
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and

C (i) CpWV
Av< g D PPly 2 IRURY) < S 30 PiPly = Opyf = oll)
i,i'.4,5" Le[n] 1,1',9,5"

where (ii) follows from Cauchy-Schwartz inequality. Therefore, by Markov inequality we have
(B.14). Combining (B.10)-(B.15) yields Lemma B.2
O

Lemma B.3. Suppose Assumption 1, 2 and 8 holds. Fix any A not necessarily zero. For either
fized or diverging K, consider any sub-sequence n; C n. Then there exists a further sub-sequence
n;, C nj such that

7 — Wy _)\H 2
g%(wl’njk wl,njk )‘z,njk) _Op(l)

where A = (M! s ML ) are the eigenvalues of Qp (Bo) = % n=diag(Ti n,....Thn)
’ 1€[n] 110
and T; , := AQH?. Furthermore,
(i) for K — oo, max; W;, = o( K~1/?);
(7i) for fizred K, if wy, converges to a limit under the full-sequence (i.e. ||w, —w*||F = 0(1)), then
max (@i, — win — Ay)> = 0p(1)

1€[K]

Proof of Lemma B.3: R
For notational simplicity, we abuse notation and write T; = T;,,. Furthermore, we write A(f5p) and
A(Bo) as A and A respectively. Note that for both fixed and diverging K, we have

*ZZ ¢2(Bo) — o2(Bo) — Ti)(€2(Bo) — 02 (Bo) — Tj) = 0,(1) (B.16)
n| j#i

where the last equality follows from

= Z > PA(eF(Bo) — o7 (Bo) — Ti) (€3 (Bo) — o3 (Bo) — > P —T;)(e3(Bo) — Ty)
J#i

ze[n] J#i i€[n]
ZZPEE a3 (o) —*ZZ T;)a7 (o) —*ZZ —T;)07 (Bo)
HJ#Z i€[n] j#i i€[n] j#i
D op, — = Z Wi — T)02(B) + 0p(1) L 281 — 281 + 0,(1) = 0,(1)
i€ln] i#i

where (7) follows from noting that by repeating the proof of Theorem C.0.1 will show that

K ZZ T;)(€5(Bo) = ZZPZ 2(B0)0%(Bo) + 0p(1) = By + 0p(1);

ze [n] j#% ze[n] e
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(ii) follows from noting that by repeating the proof of Step 2 in Lemma B.2, we can show in a
similar manner that

% Z ZPZ%(E?WO) —T;)05(Bo) = 1 + 0p(1).

i€[n] j#

Fixed K case: Assume first that K is fixed. Then we have

*ZZ €2(Bo) — 02(Bo) — Ti)(e2(Bo) — o2(Bo) — Tj)

ZG[n]jE[n
- Z > PA(e}(Bo) — 07 (Bo) — Ti) (€3 (Bo) — o3 (Bo) — Tj)
16 [n] j€[n]
+ % GZ[:] P2E(e2(Bo) — 02(Bo) — T3)* = 0,(1)

where the last equality follows from (B.16) and
ZPQE (Bo) — 02(Bo))* < ijgc n—?"K:o(l)
’LE [n] 16[”]

for fixed K. Therefore

|[U'AU — U'AU — U'H,U||% =E||U'(A — A — H,)U||%
= Etrace(U'(A — A — H,)UU'(A — A — H,)U)

= trace ( —1/2 Z Z;Z!(e ,80 — 0} (ﬂo) Z Z;Z!(e 50 — 05 (BO) T5)(Z 2)1/2)

i€[n] j€(n]

=53 P (Bo) — 07 (Bo) — To)(€3(Bo) — o3(Bo) — Ty) = 0p(1),

i€[n] j€ln]
which gives us
|U'AU — U'AU — U'H,U||F = 0p(1) (B.17)
Then we have

Sict Pio?(Bo) - U'(A — H))U — i Pae? (Bo)U'AU ||
Zie[n] Pyie3 (o) - ZiE[n] Pyio?(Bo)

195, (B0) = Q5.0 (Bo) — Qi (Bo)l[7: = H

F
2

_ 1/K?
1 2 1 2
(f Zze[n] Pﬂez (ﬁo) 'K Zze[ Pua (ﬁO))

> Paoi(Bo) - U'(A = Hy)U = > Puei () U'AU

i1€[n] i€[n]

F
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(i) 1/K?
(& S Pao?(Bo))* + 0p(1)

> Piuoi(Bo) - U'(A = Hy)U = Y~ Puei(Bo)U'AU

i€[n] i€[n]

F
2

(i) 2 )
< JE S Pio?(fo) - U'(A — A — H,)U
(7 Zz’e[n] P07 (Bo))* + op(1) icn] -
2
2/K2 /
+ Pu - -UAU
(& Srem Pao? o))" + op(1) Z] () = ot o) AT

2

2
- ‘U’([\ —~A—H,)U

F

. 52
e Yiein) P} (Bo))* + op(1) ? Z Piioi (Bo)
2 2

P 8 A (47)
7,7, O 1
(Il( Zie[n (A% (50) —l—op HK Z 0 ( 0)) = Op( )

2
‘ ‘U’AU
F

where (i) follows from Lemma B.1; (ii) follows from (a + b)? < 2a% + 2b?%; (iii) follows from

2
@) ||+ 3 Pac?(6) \ max?(%)|| < max(o? + A% +249) = O(1)
i€[n] r
1 2
®) |7 > Pale}(Bo) — a7 (Bo)}|| = llop(1)[[F = 0p(1) by Lemma B.1
i€[n] F
2
() ||U'(A = A — H)U|| = o0,(1) by (B.17)
F
(d) HUAU =Y Pyo} = O(K) = 0(1)
Fooe [n]
1 1 1
< =—=0(1).
) % Liep Do} (Bo) ~ L3P C .
Note that
1
Qo 2= U'AU||% = P2o2(Bo
1920 (50 (Z, - ]Pﬁgg(ﬁowu b= P“U O Z PIRACACH

€[n] j€ln]

ZZPZ%E o3 (Bo) = O(1).

S

therefore, by Bolzano-Weierstrass Theorem, for every sub-sequence n; there exists a further sub-
sequence nj, such that Qs (Bo) — Q*(Bo). Let w* to be the eigenvalues of Q*(fp), so that
w; > 0 and ) ;. w = 1. By continuous mapping theorem, wj,, — w; for each i € [K]. By

HQS,H(BO) - stn(BO) - QH(/BO)H%J = Op(l) and HQs,njk (Bo) — Q*(BO)H% = o(1), we know

190, (Bo) — 2 (Bo) — Q2 (Bo)|[% = 0p(1)
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Given that w,, are the eigenvalues of stn(ﬁo), by continuous mapping theorem ﬁnjk — )\,I;Ij . 2w,

Clearly this means that max;e(x)(Win,;, — Win;, — ’f”]’k)Z = 0p(1). This concludes the proof for
fixed K.
Diverging K case: Assume now that K — oc.
Note first that
1 . 1 1.

& Yiepn Piio (Bo)

We will show that?°

max .y = op(K~1%) = 0,(1) (B.18)
To this end, denote || - ||s as the spectral-norm. Observe that
19,60 s AU s < < IVIIIA
max ws; n = s\POJIIS = S > S
i > icn) Piio? (Bo) > et Pao?(Bo) 0
@ ! [T —— oi(f) @ C/K — o(K~Y2) (B.19)

Dien) Fiio? (Bo) Yicin Pioi(Bo) T £ Xiepm Puo?(Bo)
[n]

where (i) follows by U'U = I; (ii) follows from expression (B.1). Furthermore, we have

" |U'H,Ul|s |Hnlls — max; AT} _ C ~1)2

7 _ 110 - < = < —=90o(K B.20
Next, we can orthogonally diagonalize Q4(8y) = Q) DwQ1, ﬁs(ﬁo) = Q4DgQ2 and Qy(By) =
Q3ArQ3, where Dg = diag(Wipn, ..., Wk ), Dw = diag(wip, ..., wky); @Q1 = Q101 = Ik =
Q5Q2 = Q205 = Q3Q3 = Q3Q5. Then

max(@i p — win — M)2 = ||Dgs — Dy — Ar|2 2 [104(0) — A'Qu(Bo) A — Bt (B0) B2

i€[n]

< <||§s(ﬁ0) — Q4(Bo) — Qu(Bo)lls + 1192s(Bo) — A'Qs(Bo) A+ Qu(Bo) — B/QH(ﬁO)BHs)2

(@)
< 4]1Q4(Bo) — Q5(Bo) — Qar(Bo)lI% + 4/192s(B0) — A'Qs(Bo) All% + 4|2 (Bo) — B'Qu (B0)B I3
(i

< 4110, (80) — (o) — Qur (Bo)| I3 + o) (B.21)

where (i) follows from A" := Q| Q2 and B' := Q| Qs3; (ii) follows from the simple inequality (a+b)? <
2a? + 2b%; the first part of (iii) follows from

(i) .
4]92(Bo) — A'Q(Bo)AlIZ < 8112 (Bo) [ + 8| AR (Bo)AlZ < 16]]24(5o)|I%

o(K™h

30The reason we show that max; @; ., = 0,(K~'/?) instead of showing 0,(1) immediately is that we will be using
this property in the proof of Theorem 2 later on
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with (iv) following from A'A = Ik and (v) following in the same manner as (B.19). The second
part of (7i7) follows from

4195 (Bo) — B'Qr (Bo)B||% < 16/ (5o)||% < I S S < S < —o(Kh.
H H( 0) H( 0) HS = H H( U)HS = (Zze[ ]PZZ 71'2(60))2 - K20? — K2 0( )

Next, we can express

U'AU _ UA-H)U
Zze[n] Pmef (60) Zze[n] P”O'? (BO)

11925 (Bo) — s (Bo) — 2 (Bo)|

U'(A—A— H,)U ? U'(A— H,)U U'(A— H,)U
<2 2 +2 2 - 2
Zie[n] Piief(Bo) g Zz‘e[n} Piei(Bo) Zie[n] Piioi(Bo)
A 2
< ||[UA—A—H)U N 2(X i) Piie} (Bo) — Xicp Piio? (50))? - [|U'(A — Hu)U|[%
- i Pii€?
2iepn) Furei (Bo) || (Zz’e[n} Piie; (Bo) - Ziepn) Piio; (50))

@ 2/|U'(A — A~ HA)U|[3
(Xicpn Piiel (Bo))?
where (i) follows from Lemma B.1 and ||U’(A—H,)U||% < [|A—H, ||} = max;(0?(By)—A%112)? < C,

in the same manner as in (B.19). We now separate the problem into two cases now to consider:
(A) & =0(1) and (B) £ — ¢* > 0%L. Suppose for the moment that we are under case (A). Then

+ O(K_Q) (B.22)

HU’([\—A—Hn)UH2 < HU/(A—A—J%)UH2
= 33" PA(H(Bo) — 02(Bo) — T)(€(Bo) — o3 (B0) = Ty) + D PAe3 (o) — 2(Bo) — Ti)?

i€[n] j#i i€[n]

D oK)+ 3" PHe(B) — oF(Bo) ~ 1) 2 o(K)

i€[n]

where (77) follows from (B.16) and (7i7) follows from

( > Pi(eF(Bo) — o7 (Bo) — ‘2)<c > u_Cpn > Pi=Cpn=o(1)

i€[n) i€[n] ze[n]

since p, < 6% = o(1) under case (A), together with assumption 3. Therefore, by Lemma B.1 we
have

2|U'(A — A — Hy)U3
(Xicim Piie? (Bo))?

31Note that (B) should really be for some sub-sequence % rather than the full sequence. However, we can always
assume W.L.O.G that (B) holds for the full sequence since the result of Lemma B.3 is provided for some sub-sequence.

— oY (B.23)
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so that combining (B.19), (B.20), (B.21),(B.22) and (B.23) yields
maxw n < élrnax(wZ n— Win — )\fn)Q + 4max wzn + 4max()\fn)2 =o(K™h)
7 7

%

which proves (B.18).

Next, suppose we are now under case (B). Denote A := diag(e? + A20? + 2Aeqvy, ..., €2 +
A2 +2Ae,v,) and AT = 2diag(All e + A2TTyvy, ..., Ampe, + A%TL,v,,). Then

[U'(A = A= Hp)U|I5 = |[U'(A = A+ ADU[3 < 2/[U"(A = A)U|3 +2/|U'ATU 13 (B.24)
We first show that the preceding equation is o(K). To begin, observe that

IUATUG < [|[UATU|} =4 ) PA(AILe; + A°Thv;) (ATlje; + ATLv;)

i,j€[n]
=4 Y PYAMLILeie; + 20T ei0; + AMLITviv)) (B.25)
i,j€[n]
Furthermore,
> P Iee; = Y PILIG (8¢ — 2¢6;(PY) e+ (PV)e(P))e) = o(K) (B.26)
i.j€ln] ijeln

where the last equality follows from

Z P2IIT1;¢:¢; <7 3 P4+—Z ”_Cp"— o(1)

i,j€[n] i,j€[n]
2

C
Z 2ILILE(PYYE | < Y. PERLIRY RV + PPV < Cpll = o(1)

= K2 gty
JG[n] 1,9, 5" €[n]
l) 1 C
2 Wi~ W 2112E 12 2 W2
= PR ye(ry) ZPH PYYeR < = 3 PR Y (P
:]E[n i,j€[n i,5€[n] Le[n]
< Cpn = 0(1)

where (i) follows from 2|ab| < a®+b?. In the same way as we have shown (B.26), we can show that

Z P%Hiﬂjeivj = O(K)
i,j€[n]

and

> PiLIvw; = oK),
i,j€[n]
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so that by (B.25) we can conclude
|U'ATU||% = o(K). (B.27)
Next, we will show that
[U'(A = A)U[3 = o(K) (B.28)
We can express
A= diag(e3, ...,e2) + A2diag(v?, ...,v2) + 2Adiag(e1vy, ..., envy) = A+ As + As
and
A = diag(53, ..., 52) + A%diag(GE, ..., S2) + 2Adiag(F, - An) = A1 + Ag + Az
Then by using 2|ab| < a? + b2 we have
U (A = A)UI5 < 40" (Br = AU+ 41U" (A2 = A2)U[§ + 41|U"(As — As)U I3
Therefore, to show (B.28) it suffices to show
1U'(Ar = A)U[3 = o(K), (B.29)

since the other terms can be shown in the same way. To this end, recall that e? = ¢? + ((P}V)'¢)? —
2¢;(PV)'e. Then define Ay 1 := diag(é?, ...,¢2) so that

1U'(Rs = ADUIIE < 20|A10 = AalfF + 20|07 (Ar - Ay 1)U|!§

< 2[R — MlfE + 20U (R — K )|} = max( el -5+ Y P e ((P)e)?
i,j€[n]
+4 > PL@EPY)e)E (P -4 ) P, )e((P}Y)'e)? (B.30)
ij€ln] i.j€ln]

By Van der Vaart and Wellner (1996)Lemma 2.2.2] and noting the l,-norm inequality || f||1 < || f]|2,

defining f := max;(e? — 57)? we have
1 2 _ =2)2 n'/? 2 =2\4\1/2
e (e mas(e? — 92 = 1l < il < " max (E(e2 - )Y
nl/2 nt/2 1 1
< = < =
<C K CKl/Z K1/2 — C’[('1/2 0(1)'

under case (B). Furthermore,

() E| > PHEMUE* | < 3 PIE(RY)E!

i,j€[n] i,j€[n]
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< PR @EN DD @DHPED < ()K= o(K)

1,7€[n] L€[n] Le[n] '€n]

) E| Y. PAE@EM)e)e;P)e)| | < Y PEE(PY)e)?

i,j€n] i,j€[n]
<C Y PEY (B <) Y Pl=o(K)
ijen]  ten] i.jeln]
() 26| P, e(P"yer| < Y. PE@(PRY)e)+ > PIE(PR)e)
1,j€[n] i,j€[n] i,j€[n]

Putting everything together into (B.30) yields (B.29), which in turn yields (B.28). Combining
(B.24), (B.27) and (B.28) yields

1U'(A = A = Hy)U[% = o(K)
Combining the preceding equation with Lemma B.1, (B.19), (B.20), (B.21) and (B.22) yields

maxw n < 4max(wl n— Win — A,{In)Q + 4maxw?,, + 4max(\ )2 = o(K1)
1 i ’ 1 ’

which proves (B.18) for Case (B). The proof for diverging K case is complete.
O

Lemma B.4. (Conditional distributional convergence implies unconditional distributional con-
vergence) Suppose we have real random variables X, X1, Xo, X3, ... defined on a probability space
(Q, F,P). Consider any sub-sigma-field A C F such that P-almost everywhere, for any Borel set
B € B(R) we have P(X; € B|A)(w) ~ P(X € B|A)(w). Then X; ~ X.

Proof of Lemma B.4:
We need to show that for any function f € Cy(R), where Cy(R) is the set of continuous and bounded
functions on R, we can obtain

EF(X:) = EF(X) (B.31)
By Dudley (2002)[Theorem 10.2.5], we can express

E (F(Xi)|A4) (w /f JPx,a(dz,w) Vi € N (B.32)
where N; is the negligible set for each i € [n]. Define N := U;ez, N; where Z, := {0,1,2,...}, so

that (B.32) holds for any w € N€¢, with PN¢ = 1. For any w € N¢, by our assumption we know
P(X; € B|A)(w) weakly converges to P(X € B|A)(w). Therefore, for every w,

/ F@)Px alda, w) = / F ()P xya(da, ).
R R

By Dudley (2002)[Theorem 10.2.2], for every fixed w, Px, 4(dz,w) is probability measure over
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x € R. Hence, by dominated convergence Theorem and (B.32)
EF(X) = EEUDA @) = [ [ f@Pxaldrw)Plds)
weN¢©
- [ / F(@)Pxaldr, w)P(dw) = EF(X)
weNe JR

which proves (B.31)
O

Lemma B.5. Assume that we do not have controls W in the data-generating process of (2.1). Fix
any A # 0 and let % = Ok € REX" guch that Okl, = O € RE is fixed for every fized K,
where Ay = diag(Ily,...,I1,) and 1,, € R™ is a vector of ones. Suppose that for every fized K,
||Z' (€€ — EEE) Z||p = 0p(1) and assumption 4 holds, where & = e; + Av;. Furthermore, assume
that Amin (0 OK) > C1 > 0, Anaz(B1,x(A)) < C2 < 00, and HgKH%/K < %, where Cq,Cy does
not depend on K. Then

lim lim P ((Z/e(ﬁo))’(z'x(ﬂo)zrl(Z’e(ﬁo)) > ql_a(x%)) =0

K—ocon—oo
where /A\(ﬂo) = diag(e%(ﬂo), - 6%(,80))
Proof of Lemma B.5:

Fix some K. Define J, g = (Z'e(B0))(Z'N(Bo)Z)"H(Z'e(Bo)) and Y1x(A) == XAk €
REXK where log = (I, Ik)'. Then e;(8y)? = &2 + A2? + 2AIL¢; and Z'e(Bo) = Z'€ + Ay/nbk.

n-127, (Bo) wN(AEl/Q (A)§K,21(A)) (B.33)

where the convergence follows from the Lindeberg-Feller Central-Limit-Theorem, assumption 4,
UL — 5(1) and ||Z/(¢€' — E€€")Z||p = 0,(1). The Lindeberg-Feller condition can be verified by

n2

fixing any 1 > 0 and observing that

1 (i) 1
- Z E{||1Z:¢|31(|1Z:&l|r > nv/n)} < - Z \/E||Zif||4pp(||zz’5||F > ny/n)

1€[n] i€[n]

(iii) C 3 El|Z:&)%  C 3 1 C
- n n 0

iem M e 1M

where (i) follows from the Cauchy-Schwartz inequality; (i7) follows from E||Z;&;||3 < max; || Z;||FEE} <
C'; (ui1) follows from Markov-inequality. Furthermore, we have

Z'A(f‘))z — k(D) + A%04 0k + 0,(1) (B.34)

where the equality in the preceding equation follows from Markov inequality and

_ Liep B Mtrace(Zi2i2:2) _ C ¥igy 1L supi [1Zilly _ 1T _ o)

n2 n?
F

EHZmﬂﬁﬁm&
n
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Therefore, by (B.33) and (B.34), we have

Jn i~ Z(A0k) (Ix + A5 (A) V20505 ,(A) Y21 Z(AlfK)
< (A2 12)
- )\mm(IK + A221,K(A)_1/2@/K@K21,K(A)_1/2)
X5 (A?]0k]13)
1+ AQ)\mm(ELK(A)—1/2@’K6K217K(A)—1/2)
< X (A2 F|2)
-1+ A2)\min(21,K(A)_1)/\mz‘n(@/K@K)

kOB () i
L+ A S ) s

where C3 > 0 is some chosen constant such that it does not depend on K and Amin (O Ox) >G>
Amax (ZI,K(A)) 02

C3 > 0 by assumption. Finally, note that

X5 (A%]0k 1% 1 A?|0k|[%
k) _1t— g <1 (B.36)
14+ A2C, 14+ A2C,

0,112 ~
whenever C5 > %. Since ||0k||%/K < %, we can always find such a Cj3, so that by noting

ql,a(%) — 1, combining with (B.35) and (B.36) yields

i L P (] 2\ < fim P Xk (A%|0k|[2) Xk _pQ D=0
i lim (n,K>Q1fa(XK))—KgnOO H—AQC?)><11fa(f) =P(1-m>1)=

for some 7; > 0.

80



C Two estimators satisfying criteria (2.12)

This section provides proof for the consistency of Crudu et al. (2021) and Mikusheva and Sun
(2022)’s estimators under the null, for both fixed and diverging instruments. The diverging in-
struments case is discussed in the aforementioned papers. We show that under some regularity
conditions, consistency under the null still holds for fixed instruments.

Theorem C.0.1 (Standard estimator). Suppose Assumption 1 and 2 holds. If % = O(1), then
for fized A,

q)itandard( Z ZPZQJ Z2 )

Ze[n] J#i

= 2 S S PR (B0 (o) + 2T (o) + AT 401+ 3 AY)
ze[n] J#i ‘e

_ ‘131(50) + Dstandard(A) + Op(l + Z Az)

1€[4]

where ®1(Bo) := = Dicn] 2ot PZa?(Bo)os (Bo)

Theorem C.0.2 (Cross-fit estimator). Suppose Assumption 1 and 2 holds. Furthermore, assume
'l
Pn - Then

B (9) = — 32 3 PRlea(o) Me(fo)lles (5o Mie(50)] = B1(5) + 0,(1)

ze[n] JF#i

2

M“M”JrM? :

where M =1, — Z(Z'Z)"'Z" and ﬁf = For fized A # 0, if p, 'L MU — O(1), then

®7 (By) = @1(B0) + DY (A) + 0p(1+ Y AY)

1€[4]
where
cf 2A ! !
DY (A) Z > " PLVi(A)M{IIV;(A)M]IT
i€ln] j#i
2A2 2 / !
ZZP T1;M]e(Bo)I1; Mje (o) +fz IV (A)V;(A) M
i€[n] j#i i€[n] j#i
!/ 4A2 ! !

Z V(AL Mje(Bo) + = > D P5Vi(A) ML Mje(5y)

ze[n] JF#i i€[n] j#i

with V(A) := e + Aw.
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C.1 Proof of Theorem C.0.1
Noting that e;(8o) = Vi(A) + AIL; where Vi(A) := e; + Av;, we have

By () = = 30 ST PR(VA(A) + AT 4 2ATLV(A)) (VA (A)
’LE[TL ] jF#i
KZZﬂw X )
ze[n ] j#i i€[n] j#i
ZZP2HV VA(A )+YZZP£H3H2
ze[n] J#i i€[n] j#i
+8;‘(‘°’zzaan%nv Y Y )
i€[n] j#i i€[n] j#i
5
= Z Ty
=0

The proof entails showing that

KZZPz o2 (B0)o}(Bo) +0p(1+ Y A)

n| j#i i€[4]

Vi(A)

2
_ a7 ZZP2H2O' + A%Z 4 2A9) + 0p(1+ A3 + AY)

LV
ze[n] J#i

To = 0p(1+ A? + A3
2A4 27172772
T 2 2 P
i€[n] j#i
Ty = 0p(1 + A% + A%)
Ts = 0p(1+ A? + A3 + AY)

+ APITF + 2AI1,V;(A))

Combining (C.1)—(C.6) yields the second equation of Theorem C.0.1. By recalling that o2(8y) =

o2 + AQZ? + 2A%;. Combining with

40 C(A%2+ A%+ A?*
S Y PmE A% 2ag) < (A FAEED S
i€ln] j#i i,j€[n]

and

2A4 27172 2 4
ZZPUHJI Z =CA

i€[n] j#i i,j€[n]

yields the last equation of Theorem C.0.1.
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Step 1: We show

1

2220 Z > Plolo} +o0p(1) (C.7)
i€[n] j#i ze[n] J#i
By noting €; = (€; — 3_yep Pie Wer), we observe
=3y ZW—KZZPZ?“?—* S PR Y P EE o Y0 S PR Pl e
i€[n] j#i €[n] j#i i€[n] j;éz Le(n] ze[n] J#i Len]
E LS REY i 3 YRS PR aa(Y P e
i€[n] j#i Len] le[n] J#i Le[n] Len]
—*ZZ (X Pram(y el + ¢ 3 S P P e
[n] j#i Le[n] Le[n] le[n] JFi Leni

4
T K J i e i
KZZ ZPK €eej) Z 7€) + ZZ Z g@g)(ngeg)

i€[n] j#i Le[n] Le[n]
9
-y 4
m=1
We will show that A, = op(1) for m =2,3,...,9. First,

2

= DG

i€[n] j#i

~2
Z e 6(6‘7

= DI ite? Z > P PE(E - @ =)
ii'€[n] j#i j'#i’ Ze[n] ve
—KQZZZ ZZZ PGP Py
i€[n] j#i L€[n 1€[n] j#£i L€[n]
QZZ Pﬁz—M:O(l)
i€[n] L€[n]

implying that

P2 ~2

- X Y r

i€[n] j#i

Z Py &€ + op(
Le(n]

Furthermore,

ZPE €r€;

L€n]

=SSR

i€[n] j#i
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ze[n] JF#i

Le[n] Le[n]

egejeg/ej/)

DI I

1€[n] j#i L€n]

P€]|

)



N % Z Z Z PZ%PEJ/C" S Z Z PJZ P/e/E erejepey)

1,8/ €[n] j#i £ Le(n] Z’;éj
2 P2 2 P2 W
DN 11D DI S NI S S S LG
1,4/ €[n] j#4 L€(n] 1,0/ €[n] j#i £
C W C 2 w
< — — =

so that Ay = 0p(1). We can show that A4 = o0,(1) analogously. Next,

EA3<—ZZ 2> (P < opY = o(1)

i€[n] j#£i Len]

so Az = 0,(1). Note that A7 = 0,(1) by the same argument. Next,

Edy < 2 Z > P ( > (PP + Py P PP )) < CpY)? = o(1)

ze[n} J#i £,ke[n]

so Ag = 0,(1). By the simple inequality of |ab| < 1a? + 347,

E%ZZ szeezef Z gejeg

ze[n] j#i Le(n] Len]
OO EIEE DI Z &)’
ze[n] J#i Le[n] i€[n] j#i

<§22P§~3E<2 W) OSSR YR o)

i€[n] j#i L€[n] i€n] j#i teln]

so As = 0,(1). Next, observe that

YRR Plaa = o 3 S PEE(Y. Pl a)

i€[n] j#i L€n] i€[n] j#i L€n]
C
<K2221’%(ZZ 'k>2+z(1’a%4)
i€[n] j#i L€[n] k€[n] L€[n]
< C(py)?

implying that

£ < s 30 PR PR+ i 30 SRR P
le

i€[n] j#£i i€[n] jF£I L€n]

< Cpy +Cpy)? = 0p(1)
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Hence Ag = 0,(1). The proof of Ag = 0,(1) is analogous. Therefore we have shown that
= S PR = A+ o)
i€[n] j#i
It remains to show that
A =01+ 0,(1) (C.8)
By defining 7, := (W'W)~'W'e, we can write e = € — WA,, so
Qee = Qzz — 2Qz w5, + Qws.,w7.

By the fact that Ay (W/'W/n) > C > 0, we have that 7, = O,(n~'/2?). We can express

1 . = 1 N
Quaewael = | VW PW Re = =7, 3 PaWiW{Ae

1 ~
NI Y PiWiWi3e

\/? i€[n]

\/~H%HF/\max Z P;iW; W/ \/>H76HF)‘IH&X (W W)

i€[n]

= Pn nt n)= Pn =o
= /()0 = Op(—72) = 0p(1)

so Qws,., w5, = op(1). Furthermore,

EH\ﬁ > PiaW|li = —E Y PiPjeewiw | = —trace O Piiwwy)
i€[n] i€[n] j€[n] i€[n]

Py pa

< Cfntmce(W'W) = O(fnn)

so that

1 . 1 JUN ~
QE,WWQ = ﬁgPW'Ye - ﬁ Z PiieiWZ‘/'}/e = Z Pie;W, / Ve
1€[n]

ze [n]

=0 (\/% 1/2)019(”71/2) = op(1).

Therefore Q. = Qzz + 0p(1), implying that ®; = Avar(Qzz) = 7 ZZE” ZH&Z 5 G2 ], SO we can
express our requirement of showing (C.8) as

ZZ P25252 + 0p(1) (C.9)

zen JFi
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instead. Express

M- 2 Y S E = 2 Y S R - 8 + e - 57a))

i€[n] j#i zE[n] J#i
~ ~ 2
LSS -+ L Y e - i) - D
€N j#i 1En j#i

and note that

2 RFEE@E -5+ o) Y o)

ze[n] J#i
where (i) follows from
2
e(B- LY Y BRE-7) =L S Y RRLEE @ - @ - -
16[71] JF#i 1,4’ €[n] ];ﬁz
J'#
C Cp?
fZZ”_"wm
i€[n] j€n
and (ii) follows from
2
~ - C C’p
Py ymE@-a) <G Y Yo
'Le[n} J#i 1,4’ E[n] jFi

The proof of By = 0,(1) is analogous to (ii). Hence (C.9) is shown, which proves (C.7).

Step 2: We show (C.1) In a similar way to showing (C.7) we have

4
S B = RS S B a1+ A,

i€[n] jF#i i€[n] j#£i
407 _ 4
A S P = 2 S S B 18
i€[n] j#£i i€[n] j#i
A2 2.2, 2 2 2
D ST TEES 35 S RN
i€[n] j#£i ze[n} JF#i
4A
S S e 2 S Y s
i€[n] j#i ze[n WL
4A3 2 92 3
oS> P = R Y SRR, a1+ A7)
i€[n] j#£i i€[n] j#i
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Therefore by expression (B.1),

2
Y RVAANIS) = &Y Y R S Y P RS S P,
i€[n] j#i i€ln] j#i i€ln] j#i i€ln] j#i
4A2 4A 4A3
DTN 3 pic ENRRE ) 3 oyt o
1€[n] j#£i 1€[n] j#£i i€[n] j#£i
KZZPE o2(B0)o2(Bo) + 0p(1+ Y AY) (C.10)
i€[n] j#£i i€[4]
Therefore (C.1) is shown
Step 3: We show (C.2). Note that we have
4A* 40?7
Y S p = S S pan a1+ o
i€[n] j#£i i€[n] j#£i
4A2 S PR = S PR A2
1) Ui Si + Op + )
i€[n] j#i ze[n ] G#i
4A? 5 5
Z Y Plewll; = Z D P + 0,(1 + A?) (C.11)
i€[n] j#i i€[n] j#i

To see this, for the first equation, observe that E¢;ejeyep # 0 only if i = £ =i/ = ' or two pairs
are equal (e.g. i = £ and i’ = {'). Therefore

2
8A* 64A% IS
7 2 2 el | = Sm > BRRLIGIL P Rl EaEe
A NIRRT 2
CA4 Z PAP2II21I3, (P )? P7 IS PY P,
it g 1=y’
7]7‘7 1/ 1’ 7]7]
prI'II prIT'TI
<CA'(py)? sz TC n )’ A‘L‘Kz = 0p(AY)
Furthermore, we have
2
Cpn

CA* 919
< K2 ZPZjHjP@

E ~2 ~2 2
6 o; j

JF

ZP

4pnanH
ZHEPK < CATRE

Z
i€[n] ',J 14
Cpn

= A%(1)0(1) = o(AY),
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and

CA2 ppIl'TI

2 2 27172 2 n 2
§ " PE(PY)ee PV I E SN2 S () < oAl = o(A2),
i€[n] j#i n] j#i Ze[n]

so that by expressing e; = ¢; + (P/V)’¢ and using Markov inequality,

4A2ZZ 6_0 2 ZZ ~2 ~2 2 ZZ PW/~Hz

i€[n] j#i 1€[n] j#i i€[n] j#i
4A2
Z D PL(PYYed PVIE = 0p(1+ A?).
i€[n] j#i

The second and third equation of (C.11) is shown similarly. Expressing V2(A) = €2+ A2v? 4+ 2Av;e;
and combining with what we just showed, we have (C.2).

Step 4: We show (C.3). We can express
I;V;(A)V(A) = je; VA(A) + AlLju; V(A)

Notice then that to show Ty = 0,(1 + A% + A?’) it suffices to show + Dicn] 2ot Pfjﬂjeﬂ/f(A) =
0p(1 + A2 + A3. However, since V2(A) = €? + A%0? + 2Awv;e;, showing Ty = o,(1 + A% + A3 can
be reduced to showing

I Z Z 2Tie el = op(1), (C.12)
i€[n] j#£I

since the other terms are dealt is a similar manner. To begin, express e? = 2 + (Zme[n] PVe,)? —
2¢; Zme[n} PWe,, so that

mn

PO ATCES S MLELES WM LDIL LN,

1€[n] j#i n| j#i ze[n] jF#i men
PET AN S na f SE A S e
n| j#i mein] i€n] j#i me[n]
Z 2 PiM; D Plda( Y Piméw)”
n| j#i me(n| me(n|
6
+ % Z ZP;;Hj SN Phen Y. PhenE=Y Tay
i€[n] j#£i me(n) me(n) =1

Then 151 = 0,(1) by

E(TQJ = K2 Z ZPZ%PZQJH? ~Z2gl2,g?+ Z |HH |Ee
n] j#i zze[n
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Next, Th 2 = 0,(1) by

ElTsal < 12 0 Y PRI S (PRCERIE < 1 Y S PAPY < plf = o).

i€[n] j#i me(n] i€[n] j#i

Furthermore,

C Cp?”
BTy <o 2. PAPR (Y (PR +|PPuy) < <0 Y PiBY, = Opl =o(1)

w34 €lm] mE|n] i.jii 5/ €n]
so Tp 3 = 0p(1). We can repeat a similar proof to show T5 4 = 0,(1). Next,

EiTel < o S BIEECY Bl + 3 ECY P!

i€[n] j#i me(n) i€[n] j#i me(n)
< Cpy = o(1)

so Th5 = 0p(1). We can show in a similar manner that To 6 = 0p,(1). Therefore we have shown
(C.12), which proves (C.3)

Step 5: We prove (C.5). Since V;(A) = e; + Aw;, it suffices to prove

L z S PP, = o,(1),
n] j#i

which follows from e; = €; — (PJW)’ e, together with

2
~ C Cp
2 2 p2
Ly S| <8 S < u
ze [n] j#i 1,7/ ,j€[n]
and
2
C
2 2 /~ 2 w
Ly ymenerye] < S Y pen Y ey
16 77/] ]#Z iaj’i/’j’ EG[TL]
C 2 p2 W2 W2
< CS mE R Y
4,5, 5’ L€n] L€(n]
C
= %3 > PIPIPI P, < C(p))? =o(1)
i7j7i/7]
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Step 6: We prove (C.6). Since V;(A)V;(A) = eiej + Ae;vj + Avie; + A%vv;, it suffices to prove

1
e > ) PillIljeie; = o,(1)

i€ln] j#i

We can express e;e; = €;€; — Ei(IDJW)’g— e;(PVYe + (PZ-W)’E(P]W)’Q and note that

2
Cpn
ZZP IL;11ee; 2 Z ”_ =o(1)
ze [n] j#i i,j€[n]
Furthermore,
2
C
W/ 2 p2 W pW W pW
ZZ SILIL e (P )'e < %2 > PLP}( Z\ijpjm"Hsz‘/sz/)
ze[n j?éz i:jzi/ujle[n}
¢ 2 p2 W W2
Sﬁ Z Bij Py ( Z ZP m)? + (Pn)7)
i.5,4',5' €[n] me|n] me([n]
C
— 5 > PEPR(JPYPE + )% < Cll)? = of1)
i,5,3',3' €[n]

and

? > PRI (P e e

i€[n] j#i

c W pW pW pW W pW pW
< 7 Z PZ%PEJ Z |szszP]ij m|+ Z |szszP'Lm/Pz’ ’D

K2
1,5,¢' 5" €[n] me(n]
Clpy)?
<Ol S R < — o)
i,5,1".3'€[n]

We have shown (C.6), and the proof is complete.

C.2 Proof of Theorem C.0.2

Observe that we can express

¢ (8y) = Z > P2 ) + AIL)M{(V(A) + AIL)(V;(A) + AIL) Mj(V(A) + AL
ze[n] JFi
_ 2 P2V, (AYM!V (A, (A) MV (A 247 P2V;(A)M!TIV;(A)M1T
—Ezzz‘jz()i()]()j()+722¢jz()z‘J()j
ie[n] j#i i€[n] j#i
ZZPQHM@ Bo)IL; Me(Bo) —i—fzz MV (A)V;(A) MG
i€[n] j#i i€[n] j#i

90



Z > P? 'V (AL Mie (o) + — Z > " PEVi(A) ML Mje(5o)

i€[n] j#i i€[n] j#1

5
EZT@

=0

where V(A) := e + Av. The proof entails showing

Z > PEoi(Bo)oi(Bo) +op(1+ D AY) (C.13)

i€[n] j#i 1€[4]
as well as
=ETy + op(1 + Z AY) for £e€{1,..,5} and
1€[4]
Z ET, = DY (A) (C.14)
L€(n]
When A =0, it is clear that T3 = Ty = ... = T5 = 0, so that the case of Theorem C.0.2 for A =0

is shown immediately upon proving (C.13); this is shown in Step 1 below. We can therefore focus
on the case of A # 0.

Step 1: We prove (C.13):
Sub-step 1: We show that

= Z > " BlleiM]e]le; Mje] Z > PL5IEE + op(1) (C.15)

ze[n] J#i n] j#i
Express
4
eiMle = &M[E — &(PYe — (P YeMle + (PY)e? = Y Aus
/=1
Therefore
9 A A
2
Y Byl el = 233 33 B
1€[n] j#i E:l V'=14€[n] j#i

We first show that

S S B AuA = = S S P 4 0,(1) (C.16)

i€[n] j#£i ze[n] JF#i

Define the random variable &;; := 'éiMi’E’éjM]’.'ev— E(EZ-Mi’é'éjM]’-é’) so that the mean of &; = 0.
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Then

2 2
2 D2 2 2 ~2~2 2 D2
gzm&m—*zzfa bty 5| =2 (25 R,
ze[n] J#i i€[n] j#i i€[n] j#i
K2 Z Z B + 1o K2 ZPZQJPl ESijéie + 702 K2 Z PME&J&M

i€[n] j#i
where I3 is the distinct index of {3, j,k} € [n] and I, is the distinct index of {i, 7, k, £} € [n]. We
first note that max; j; Eﬁfj < C, which follows from the proof of Lemma 2 in Mikusheva and Sun

~ 2
2022). Furthermore, noting that P? = < C’P2 by My; =1—P; > 1—6 >0, we have
i

m
. Cpj Cp?
ﬁzz Efl] KZ ZZ Z]_ p2 ZRZ:%:OC[)’
[ ]]3&7/ Ze[n] .776‘ ZG[n]

KZZ 5 PREE €] < 22 S PRLECTEE,

C Cn Cpn
gﬁz%%sﬁz D PR TG DRSS T = olt) and

I ke[n]

Cpn
C K2 Z PkeEfmfké < = Z Pké’Egmfﬂc’ < K = 0(1)7

where the first inequality of (c) follows from the fact that since 14,7, k, ¢ are distinct in I4, the
non-zero terms of E(&;;&xe) are given in the proof of Mikusheva and Sun (2022)[Lemma 2] as

|E&:i&en
< C| M Mjy, 4 Mij My, ) (Mg Mjjy, + My; May)| + C|(M;; My + My Myj) (Myg, Mg + My My)|
+ C(MyyMjy, + My My;)? + C(Pij Py + PigPji.)?

The second inequality of (c) follows from Mikusheva and Sun (2022)[Lemma S1.2]. Specifically, we
have

1 2
K2 § PMyM”MkMM il < K2 § P PM Jk =+ § PiiP,feMj?k < T(n? § P2, My,
’]’k g 7] k e j7k7€ k/‘?e

= KQ Z Pkf

with the rest of the terms in |E&;;¢s| dealt in a similar manner. Therefore (C.16) is shown. It
remains to show that 2 > icn] Z]#P A1 Ajp = op(1) for (£,0') € {1,2,3,4} x {1,2,3,4}\(1,1).
Note that

B2 S P = 3 Y B E@R)RY KZZ S (R e

ze[n] JF#i i€[n] j#i i€[n] j#i ke[n]
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Cp" S P2 = CpY = o1)

1,J€[n]
so that by Markov inequality,
= Z > PLAZ, =0,(1) (C.17)
ze [n] j#i

Next,

ZZ 13 Kzzﬁfg Z PY M Pl M, E(€1€16mep)

ze [n] j#i 1€[n] j#i k,L,m,pE[n]
(@) C
< e D0 D PG | DR MRy Mig| + (Pi)2M) + Y (P )M,
i€[n] j#i k.l k
O S P2yl o)
i,j€[n]

where (i) follows from the fact that the non-zero terms in E(eyese,,€p,) are when the indexes k =
{ =m = p, or when we have two sets of indexes such that the first two indexes equal the first set,
and the next two indexes equal the second set, e.g. kK = ¢ and m = p; (ii) follows from

ZI ¥ MiPYy Mi| = (Y|P Mal)* <D (PY Z w=Pr MY <py.
k k

Hence
7ZZP2A13—OP ) (C18)
i€[n] j#£i
Furthermore,
E(PYYe) < S (e P@Y 2+ S (P <o)+ ol )R < oplf
£,k€n] L€(n]
so that
2 D2 A2 W /~ 4 CPZV 2 w
E? ZZPZ‘inA ZZ P = K Z Pij :Cpn :0(1)7
i€ln) j#i ze[n] J#i i,j€[n]
implying

= Z > PLA7, =0,(1) (C.19)

ze[n] JFi
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By the simple inequality |ab| < %a2 + %b2,
2 42 2
KZZ MA@<—ZZPA ZZPAM, (C.20)
i€[n] j#i i€[n] j#i n| j#i
Restricting (¢,¢') € {2,3,4} x {2,3,4}, by (C.17)-(C.19), using (C.20) we have
= Z > PrAiAjp = op(1) (C.21)
n] j#i

It remains to show that = Dicn] 2ojti P2 “AipAj = op(1) for (£,0") € {(1,2),(1,3),(1,4)}. To this
end, we can repeat the argument in the proof of (C.16) to show that

— Z > PZAizAjp = Z > PZE(AinAja) + op(1) = 0p(1) (C.22)

ZE[TL | j#i ze [n] j#%

where the last equality follows from Markov inequality and

e X S PR = | 3SR S MR e < 3 32528 3 el

i€[n] j#£i i€[n] jF#i Leln i€[n] j#i Le[n]
@) C
< —ZZ 2 MG Y (P ZZPZM“PXV
i€ n] JFi Le(n] Le(n] n) j#i
Z = Cp,) =o(1)
1,J€[n]

where (i) follows from Cauchy-Schwartz inequality. Next, we will show

% Y > PlAi1Aj3=0,(1) (C.23)

i€[n] j#£i

Fix any 4. For indexes (k, k', £,¢',m,m’) € [n]%, define J; to be the set where k = k' = ... = m’, so
|J1| = 1. Define J> to be the set where three indexes are equal, e.g. k =k' = ¢ and ¢/ = m =m/.
Define J3 to be the set where two indexes are equal, e.g. k = k', £ = ', m = m/. Define Jj to
be the set where three indexes and two indexes are equal, and one index equal 7, e.g. k =k = ¢,
¢ = m, m' = i. Note that {\73};1 are not necessarily mutually exclusive in that there may be
overlap. For any i € [n], the non-zero terms in E(€?€,€x €r€pmeyny) are in {Js}i_,. Therefore, for
any 1, j,

ES?(ME)(PY)e) (M) = > Myl MMy Py M;nyE(€7€1Ek € Emeny)
kK" £.0 mm/'

< CZZ ‘Msz JzMg/P M ‘
s=1 Js
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Then
}:muRMMﬂMw m|—§:M’ )2 < Mu(p))* < pi
Z | M PRy MjyMip P M| < CZ | My, PY M| | Mo P M|
k0

< C( pn Z ’MszijMzZ’ ]Z’| - Cpn Z |MszJk|)
k. k

< cp ZMkZMfk = CpV M;;M;; < CpY

© > ‘Mikpik’MﬂMif’Pi%Mm | <C Y My Py MygMie Py M|
T3 k,lm

(44)
< CMy; P M;; My Pl M;; < CplY
(d) Z | M Pl Mo Mg Py, Mm | <C My P} My Mig Py My |

k0
< CZ | M, P Mju Mip Py | < CplV > [ My M| Y [Mip Py |
k V4

k0

(423)
< Cpy MiMj; M P} < Cpy!

where (i),(ii) and (iii) follows by Cauchy-Schwartz inequality. Putting (a)-(d) together we have

Ee?((Mie)((FY)'e)(M;e))* < Cpy)’ (C.24)
Hence
2
2 ~ _ _ SN _
% S>> PiAAjs = %3 Z NS BRREEleME(PY ) eMle)) e Mye(PY ) eM)e)
i€[n] j#£i 1,0 jF#L g A
(i)
<13 Z > BiPiE[EME(P) ) EM)E) Z > > PEP}Eley Mye(P)Y) EM) e
i’ A i A
(i4) CpW pW
S G0 22D PiFly <=5 D1 PiPhy = Cpl =o()
i gF § A i,3.9,5"

where (i) follows from 2|ab| < a? + b* and (ii) follows from (C.24). By Markov inequality, (C.23) is

shown. Finally,

ZZ zlA]4 <*ZZ eZPW)N)Z—i_E(M/N(PW)N))

ze [n] j#i i€[n] j#£i
_ (i)
=SS B S e eone el ye? | o)
ze[n] JFi Le(n]
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where (i) follows from 2|ab| < a? + b? and (ii) follows from

722 2N (Pl e é‘ﬁg > PLPY < Cpl =o(1)

s

i€ln] j#i Le[n] ,je[n}
and
= Z > PIE(ME(P)Y)?)? < Z ST (Mp) (P 4+ (Ma)* (P
ze [n] j#i ze[n] jF#i k.l k
Z > P (M P} + Mii(p))?)
ze[n] Jj#i
< S P2 ooyl o)
i,j€[n]
Therefore

= Z > " PrAi1Aj4 = 0p(1). (C.25)

n] j#i

Putting (C.16)-(C.25) yields (C.15).

Sub-step 2: In a similar way to sub-step 1, we can show that

%ZZP%@M'@@JM'U—KZZ O‘Z’}/J—I-Op 1)

i€[n] j#£i ze[n] J#i

1 ~

TS At e e 5 SR 40
i€[n] j#i n] j#i

1 ~

e Z ZP%’WM’@’U]M’Q =% Z Z ]’717] + Op ) (0.26)
i€[n] j#i n] j#i

By expression (B.1) we have
07 (Bo)o (Bo) = (77 + A*G + 2%, (55 + A*C2A7))
Combining with (C.15) and (C.26) yields (C.13).

Step 2: In a similar way to step 1, we can show that Ty = ETy + op(1 + >y AY) for £ € [5]. Tt
remains to show that 256[5] ET, = D/ (A), which reduces to showing ET} satisfies the property of
D(A) in (2.12) for £ € {1, ...,5}, in order to complete the proof of (C.14). Note first that

E? = E(e — (PR =52+ Y (P )%5? — 2PlVa? < ¢
L€(n]
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since ZZE[M(P%V)Q = P}¥ <1, by property of a projection matrix. Similarly,
Evi2 <C and Ewe; <C,
so that
EVZ(A) = Ee? + A%Ev? + 2AEv;e; < C(1+ A + A?) (C.27)

By the inequality (a + b)? < 2a? + 2b? and noting that ]55 < CPZ%-, we have

2 2
E|Ty| < ca Z > PIEVA(A)(MI)? < ca Z > PEEVR(A)(M/TI)?
n| j#i i€[n] j#i
CAQ( +A+A2 CA2(1+A—|—A2)pn 9
< g LS pay? < < 2 (M)
i€[n] i€[n]
 CA%(1+ A+ A?)p,

= I'MII = O (A% + A® + A%)

For 15, note that
E(M/V(A)? < C(1+ A+ A?) (C.28)

To see this, it suffices to show E(M/e)? < C, since the other terms in V(A) are dealt in a similar
manner. Now, MMW = MW — P, where we recall M = I,, — P, P := Z(Z'Z)"'Z" and MW =
L, — W(W'W)~1W’. Hence
E(Mfe)? = EQM™ ) = E((MI)e — Pl2)? < 26(MYY)/2)? + 26(PLe)?)
=2 (MY)?5;+2) Pi5; <CM) +CP; <C

te[n] L€(n]

since MY, P; < 1. This implies (C.28). Expressing M/e(3y) = MV (A) + AM/TI, we have

CA?
E|T| < Z > PAIGE(M]e(fo))? < Z > PAIGE((M{V(A))? + A*(M{TT)?)
i€ln] j# i€[n] j#i
CA*(1+A+A?) 2012 2
< % > P+ Z P2(M/II
i,j€n] i,j€[n]
_ CAN(L+ A+ A%)p,IT o CA
< - o D Pa(Mm)?
le[n]

2 2 /

Next, to deal with T3 we first show that

=0 (A*+ A%+ AY)

EVZ(A)- (M{V(A)? <C(1+ ) A (C.29)
1€[4]
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Since V(A) = e + Aw, it suffices to prove that
Ee?(Me)? = E(MV)Z ~ Fle)? < 2E(MV)2)* + 2E3(P[2)? < C
as the other terms are shown in a similar manner. But this follows from

Ee2((MV)')? = E((M}Y)2)? + E((P Y (M) )2)? — 26e( PV Ye((M)Y )2)?

<O(Z +Z VD (MY 4+ (O P M)+ CRY V)4 MY P
L€n)

Le(n] Le[n] le [n} Le(n]
<O (M + BZVM%V (M%V)QP%V) <C.

Hence (C.29) is shown. Then
e < 2SS P (MIV(A)? + VA(A) - (MJTTY?)

i€[n] j#i
(Cc.27),(C.29) CA(1 + 216[4] AY)

< Ly sy CAUE R ) P

1€[n] j#i n) j#i
i i\ Pl MTI plU/MIL, ;
SCA(1+ZA)+CA(1+ZA)T:O (Z(1+K)A> =0 (ZA)
i€[4] i€[4] 1€[5] i€[5]
Next,
Em| < &2 Z > P )(M]V (A))? + 115 (Mje(Bo))?)

ze[n] JFi
(C 209) CA(1 + Zze ) AY)

z 'Sy A C2 N S PRE(Me(50))?

zE[n ] §#i ze[n] J#i
<CAQ+ ) A+ ZZP2E MV (A) + AMjII)?
i€[4] ze[n] J#i
<SCA(+ ) A+ CAZZPQEM’ )? CAZZ E(AM)IT
i€[4] i€[n] j#i i€ln] j#i
(C.28) CA(1 + AY) CA 1+ AY)
eans Y Ay EEE LS g e CRUT e S S5 g
1€[4] i€[n] j#i i€[n] j#i
i i i pp I MTI . i
gCA(lJrZA)+CA(1+ZA)+CA(1+ZA)T70 (ZA)
i€[4] i€[4] i€[4] i€[5]
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Finally,

2
el < Y S P J(MITT)? 4+ TE(Me(fo))?)
i€[n] j#i
O Sy p - S S PRl
i€[n] j#£i i€[n] j#£i

(@)

< OA? + o 2Pl M

= = 0(A?)

where (i) follows in the same way as Ty above. By Markov inequality, we have shown that T, = O,(1)
for ¢ € {1,...,5}. Therefore (C.14) is shown, and the proof is complete.
D Limit problem for fixed and diverging instruments

D.1 Limit Problem for Fixed Instruments

Consider now the case of fixed K. Recall that U := Z(Z'Z)~1/? € RVK 5o that U'U = I and
UU’" = P. To deal with the convergence of Q(53y), we can assume that (€,v) are jointly normal by
the strong approximation. Therefore we can assume

Ue o Ulg i/\/‘ 0 U/AaU UIAgU
uvx ) \uvx ) UTL )\ U'ASU U'AU

U'e(Bo) = U'e + AU'X L N (AU'TL U'AU)

implying that

where A(fBy) = Az+2AA5 +A2A<, As == diag(c},...,62), A5 == diag(T, .... ¥n), Ac := diag(sE, ..., G2).

YN

We use the variance estimator e?(y) := (V; — X;50)? to estimate 02(8y) = 77 + 2A7; + A%

Theorem D.1.1 (Fixed K asymptotics). Suppose Assumption 1 and 2 holds. Then for fized K,
under the null

~

Qo) £ 3" wiwxdi + op(1)

1€[K]

where the X%,i are independent chi-squares with one degree-of-freedom and Dy, := diag(w1 n, ..., WK n)
(Z/AZ)l/Q(Z/Z)—l(Z/AZ)1/2
Yien) Piio (Bo)

are the eigenvalues of

D.2 Limit Problem for Diverging Instruments

Define Q. : f Zle[n Z#i Pjja;bj. In the context of diverging K, we say that we have strong

identification whenever C := Qg — oo and weak identification otherwise. Under the arguments
of Chao et al. (2012) and Mikusheva and Sun (2022), by assumption 1 and 2, one can obtain the
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following asymptotics for diverging K: Under both Weak and Strong Identification, for K — oo,

e,e 0 ?1 6712 613
Qzz: | ~N 0], @ ¥ 7 (D.1)
Q)?J? -C 0 613 T T

for C := QHH, for some (@1, P12, P13, ¥,7,T). We can therefore take (D.1) as given whenever
assumption 1 and 2 holds. Under a fixed number of controls, one can usually obtain an analogous
result to (D.1) with the replacement of (&, X) with (e, X). However, even when the number of
controls increase with sample size, as long as these controls grow slower than K (1=m/4 we will have
the following result:

Theorem D.2.1. Suppose Assumptions 1 and 2 hold. Then for K — oo, under the null,
Qe,e ~ N(O, (I)l)

where ®1 = - Zze[n] > jeln] ” o2 o; 2 Furthermore, under the alternative, if we further assume that
HI/(H = 0(1), then

Qe,e 0 O P Py
QX,e ~ N 0 s @12 )\ T (D.Q)
QX,X -C 0 Pq3 T T

for some (P12, P13, ¥, 7,T). Therefore we have that
Qe(po) (o) ~ N(AC, @1(Bo))
where C := Q]‘LH, (I)l(ﬁ()) =AY + AN3T + A2(4\If + 2@13) + 4A P15 + Dy

Note that Theorem D.2.1 can be seen as a minor extension of Theorem A.1 in Lim, Wang, and
Zhang (2024) in that the dimensions of controls were taken as fixed in that paper.

Theorem D.2.2 (Diverging K asymptotics). Suppose Assumption 1 and 2 holds. Then for K —
oo, for B = By we have

\ﬁ D Pacl(fo) (@(ﬂo) - 1) ~ N(0, ®1).

i€[n]

If we further assume that HITH = O(1), under fized alternative A we have

Z (80) (Q(Bo) — 1) ~ N(AC, @1 ()

i€[n
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D.3 Proofs for Section D
D.3.1 Proof of Theorem D.1.1

By Lemma B.1 and Theorem 1, we can obtain

~ eUU'e dUUe  Yic) Pyo? 4 g'uu’e
Q(Bo) = = = +op(1) | (1+0p(1))
Sicm Pie;  Dic Pio? Dicp Piie} e Puao? 8
/ 1/2( 7t 7\=1( 71 1/2
_ g/Z(ZIAZ)—1/2 (Z AZ) (Z Z) (QZ AZ) (Z/AZ)—I/QZ/g) +0p(1)
Zie[n] Fiio;
= 2'DpZ + 0,(1)

where Z ~ N (0, I).

D.3.2 Proof of Theorem D.2.1

Qe.e 0 O P Py
QX,e ~ N 0 , P T T (D.3)
QX,X -C 0 ‘1)13 T T

so that by writing Qe(gy).c(gy) = Qe+aX,erax = Qee + A?Qx x + 2AQx ¢, then

Qe.e
Qe(fo)e(sr) — A°C= (1 2A A?) Qx.c ~ N(0,®1(6o))
Qxx—C

We will show that

which completes the proof.

We will show the following:

(4) Qee = Qzz +0p(1) ~ N(0, 1)
> icin)(Gi + 0i)é
= ]\/E + 0p(1)
> iem) (Gi + 0:)vi
NI

where 0; = > ., P;ll; and G; := Zje[n} HijjPZ-‘;-V. To proof the second part of the theorem,
given that {€;,v;};c|n are independent, we can follow the proof of Chao et al. (2012)[Lemma A2]
to show the joint asymptotic normality of

i) (Gi +0i)€i 3 i (Gi + 90@)

(B) QX,e = Q'ﬁ,'é+

(C) Qxx=Quu+ Qyy+2 + 0p(1)

VK ’ VK

Then (D.3) follows from (A), (B) and (C). In particular, if % = O(1), then denoting m; := II; Pj;

(Qaa Qv Qv 5,
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and noting G; = (PV)'r

; G; +0;)e; - G; + 0;)%5? C e G7 o CY i 02
Var (Zzé[n]( ) ) . Zze[n]( ) Z'Le[n} 4 Z €[n]

VR KooK "

. 2 w(pWw

(ZS) Ciep G + CII'IL _ Cn'Yiem Bi” (B)'m + 0(1)
K K K

CW’(PW)ZW Crln sze[n] i z

S G < —
T+ 0(1) < S+ 0(1) = i +0(1)
!

= Cpi e +0(1) = 0(1)

where (i) follows from Mikusheva and Sun (2022)[Lemma S1.4(a)]. In a similar manner we can

show that Var (M)

NG = O(1). This implies the joint asymptotic normality of

(Qee, Qxe, Qx,x — Quu),
completing the proof of (D.3).

To this end, we begin by showing (A), which proves the first part of Theorem D.2.1. Suppose
only that assumption 1 and 2 holds. Then WPA1, where the equalities are in terms of distribution,

0. — Dieln) 2jzi Disiei @) 1 P >icln Pi€? () Lich) Pie} 3wy~ 1
o VK VK VK VK e R

where (i) follows from Theorem 1 for fixed K and MW P = P; (i) follows in the same way as the

. e Pii0}
proof of Theorem D.1.1. Therefore, defining T;, := =<=2—+

NI and noting that T, is away from
zero, we have WPA1

0 4 Yiefn) Pue? S w1 = Ty Yiep) Picl /VE S i
€,e \/ﬁ e (2L ) \/51 Tn e 2, AL5

() Zze[n] PZZ& (#0) Wi,
= KA — 1)~ N 0,1
VE®: ZEZK] Xl g{] Valhwnp o~ VOD

Zze[n] Pns /\/7

where (i) follows from 21 as a consequence of Lemma B.1, as well as the fact that

~~ >ijen P25252 .
Z’LG[K] 'LUi,n = 1, (ZZ) fOHOWS from (I)l = % Z’L]G TL] P% ,LQO"? a,nd HwnHF = Zje[[]]P::g; ]. th]s

follows from (a) in the proof of Lemma 4.1. It remains to show that Qc. = Qzz + 0,(1), which
follows from

¢ Pe _ ZZE[TL] P“ezz Q~~ . Zze[n] (E? 612)

Qee — Qe = TR s e = NI
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Ve Pu(2&:P)"E— (PVe)?))
= Nice = op(1), (D.4)

where the last equality follows fom an application or Markov inequality and

£ [ Zick PieiPYEN® ey Sjep PubjiE@ie; Ve PIVe)
VK B K
c W2 W pW CprVLVPn Cp%d%v
< e E g PiiPji((Py )"+ Py Pjj) < E P +

i€[n] j#i i€[n]

C .
< Cplpn+ 2 20

and

. <Zi€[n} Bi(P¢Wa2> Sicin Pi Xjepm (B )%03 Sicm PPy dw

N — i <C R ngn\/—fzo(l),

where (i) follows from p}' = o(1) and d%, = O(K1="/2) = o(K). The proof of (A) is complete.

It remains to prove (B) and (C) in order to complete the proof for the second part of the
theorem. We first prove (B). By a similar proof to (D.4) we can show that

Qu,e = Qv+ 0p(1)

so that
i Palli(PV)'e
Qx.e= Qe+ Que = Que — Qu pwe + Qv +0p(1) = Quyse Nis + op(1)
Y icnl (Gi +0;)e;
= Qe+ == ]\/[—( +0p(1)

To prove (C'), note that by a similar proof to (D.4) we can show that
Quo = Qzz + 0p(1).
Furthermore, as in the proof of (B), by some rearrangement we can show that

v = T + bl = s
Qnu = Quz + Qu pw i

so that putting it together,

Zz‘e[n} (Gi + 0;)v;
Qx,x = Quu +2Quu + Qv = Qrur + 2 NG + Qz5 + 0p(1),
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which completes the proof of (A), (B) and (C), thereby completing the proof of the second part of
Theorem D.2.1.

D.3.3 Proof of Theorem D.2.2

We can express

@W%JFJkaEmﬂmmmwm:&@%Mm
0 % Zie[n] Pyie3(Bo) % Zie[n] Puc?(Bo)’

By Theorem D.2.1,

\/1? D Fuci(bo) (@(50) - 1) = Qe(Bo)e(o) ~> N(A’C, @1(fo))

i€[n]
E Details On Testing under Rank Deficiency
In this section we provide details of the our testing procedure as well as its asymptotic properties.

E.1 Analytical Test under Rank Deficiency

The analogous statistic @(ﬂo) given in (2.4) under the ridge-projection matrix is

e(Bo)" Py, e(Bo)

Q" (o) = : (E.1)
> i) Piine; (Bo)
with the corresponding critical value as
5 o7" (6o) Fy) -1
Codfn (21" (B0)) =1+ — : - 41— i”") , (E.2)
Vr Zie[n] Pii,’yn €; (50) 2 Zie[r] (wZz)Q + 1/df
where w," = (w)",, -+, W) are the eigenvalues of
Q" () := (Z'M(Bo)2)/2(Z' Z + yuli) "L (Z'A(By) 2) "/
> ien) Piimei (Bo) ’
A(Bo) is defined as in section 2.3, P;j ., are the (i, j) entries of P,, and
df ' = o(r=1/?). (E.3)

Note that the rank of f\l“f"(ﬁo) equals r, so that it has only r non-zero eigenvalues. The variance
estimator ®]" () satisfies

©1"(Bo) = BT (Bo) + D" (A) + 0p(1+ > AY) (E.4)
i€[4]
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where q)’lyn (ﬁo) = %Zze[n} Zj;éz 5, ag; (60) (60) and

O(1) if A #0 is fixed

ma) = {0(1) if A =o(1)

We have two estimators satisfying (E.4) that are analogous to the standard and cross-fit estimator
of section 2.5; namely,

ZYn ,standard
] Z > PE.ei(Bo)ed (Bo)
7,6 [n] j#%

and

Q”yn’cf Z Z iJ,n ez 50 z'yn (60)][63 (60) _]’Yn (60)]

ze[n] JF#i

where M., := I, — P,,. The proof that ®]*“"%"4(55) and &7/ (3y) satisfies (E.4) follows in
exactly the same way as the proof of Theorems C.0.1 and C.0.2 respectively, with an additional
usage of Lemma E.1; hence we omit them to avoid repetition. Our analytical test rejects Hy : 5 = 5o
at « significance-level if

Q" (Bo) > O (377 (Bo)).

The intuition for size-control is exactly the same as what was described in section 2.3.

E.2 Bootstrap-based Test under Rank Deficiency
The Bootstrap-based statistic is defined as
Zie[n] Zﬁéz Pij,’)/n € (,30)6]‘ (BO)

T (B0, ®]" (Bo)) = _
r®]" (Bo)

(E.5)

with ®]"(83,) satisfying (E.4) with the additional requirement that it can be constructed from e(S,)
and P, . We reject Hy : f = 3y at « significance-level if

T (Bo, ®7" (o)) > Clie (B7%(Bo), L),

where C’ZfdeS (&JY" (Bo), L) is the critical value that depends (1) on some large positive integer B,
(2) significance-level a, (3) i.i.d. random variables {;};c[, following the probability law £ with
the property that its mean is zero, variance is one, fourth moment is bounded, (4) the structure
of the variance estimator 5;’”(50) and (5) sequence of 7,. The critical-value is computed in the
following manner: Fix (3, a large B, and some « € (0,1). Fix any ¢ € {1, ..., B}, and generate i.i.d.
random variables {r; ¢}ic[, following the law £. We then multiply each e;(5) by ¢, denoting the

new random variable ;¢ := k; ¢e;(8p). Since EISEY" (Bo) is assumed to be constructed by using only

e(Bo) and Py, , we construct ZI\DY"’E(,BO) in exactly the same way that EISY” (Bop) was constructed, but
replacing (e(So), Py, ) with (1, Py,), where 0y = (11,4, ..., n¢)’. Once this is done, we can construct
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the statistic
Zie[n] Zj;ﬁi Pijiy1i,em5,0
= nve
r® " (Bo)

j’Ynaé —

By repeating this process for every ¢ € [B], we obtain a collection of statistics {j%’g}ge[ B]- Then

EEE {j%,z < Z}
B

Clp (@17 (B0), £) i=1inf { 2 €R:1—a < +1/dfps (E.6)

where df 3§ = o(1) is a deterministic sequence.

E.3 Asymptotic Size Control under Rank Deficiency

Define p," := maxcy] Lii,y,. We make the following assumption:
Assumption 6. Suppose p?{t < 6% for some C < oo

Let A\, € A, be the data generating process of n observations for (&,v, Z, W). We impose the
following restriction on the sequence of classes of DGPs ({Ap}n>1):

{ei, 5i}ie[n] are independent, Ee; = Ev; = 0,

*

@ =0(1),p? = 0(1),dy = O(K1=1/%) for any n > 0,
max; H% + max; Eé? + max; E@? <C < o0,
', 02(B0), ¢2(Bo) > C under the null,
Q < )\mm(&nvv) < )\m(m(WTW> < 6;
I € [7,00),h > Tsite Y > Pl 2Cr 7 =0ifr=Ky=7-ifr<K
a{’*‘ (Bo) satisfies (E.4) under the null,
where 0 < C,C,v_ < oo are some fixed constants

(E.7)

Then our test has size-control uniformly over the set of DGPs that satisfy (E.7). We formalize the
statement as follows:

Theorem E.3.1. Suppose {A,}n>1 satisfies (E.3), (E.7) and assumption 6. Then under the null,
for both fixed and diverging instruments, with possibly more instruments than sample-size, we have
exact size-control for the proposed tests, i.e.

liminf inf PXn (@% (Bo) > Ca,df,v;;((/f)?; (ﬁo)))

n—oo An EKn

= limsup sup Px (Qﬁ (Bo) > Caapors (®7" (50))) =«

n—oo XnEAn

and

liminf_inf lim Py (ﬁﬁ(ﬁo,@’{n(ﬁo)) > cg?des@ﬁ(,Bo),ﬁ))

n—00 N\ A, B—
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=limsup sup lim Py (7% (8o, 87 (50)) > CTly, (BT (B0), £)) = a

n—00 N A, —00

E.4 Asymptotic Power Properties under Rank Deficiency

The power-properties of our ridge-projection-based-tests are similar to Theorems 3-8. We first
expound on the notion of identification parameter under rank-deficiency of instruments. Recall in
section 4.2 we began by introducing the notion of identification parameter G := Q1. Under rank-

deficiency of instruments, we have an analogous notion of identification parameter, namely G :=

ZZE[TL] Z];éz PZ] W:LH H
\/F

otherwise.

. We say that we have strong identification if G — oo and weak identification

E.4.1 Power Properties — Diverging Rank

We first discuss the asymptotic-power under diverging rank,? and consider three cases for some
sequence dp, — 0: (1 ) Strong identification and local alternative, where d,G = G and A = Adl/ 2
for some fixed A g € R; (2) Strong identification and fixed alternative, where d,G = g and A = A
(3) Weak identification and fixed alternative, where G = G and A = A. We make the following

assumption:

Assumption 7. Suppose that p’}n—n =o(1) and pY := max; P} = o(1), and dw = O(r'=0/4) for
any n > 0. Let the errors and |I1;| be bounded in the eighth moment and bounded away from zero
in the second moment, i.e. max;(II$ + Ee? + ES) < C < oo and (I'IN)?, 02(By),s2(Bo) > C > 0.
Furthermore, suppose C < Amin(W'W/n) < Anax(W'W/n) < C and that Z has full rank.

Note that assumption 7 is very similar to assumption 2, the only difference is that we have
replaced K with r, p,, by p4*, and removed the requirement that p,, < § < 1 for some constant § > 0
(since this clearly wouldn’t hold whenever K >> n). Under the usual conditions of r = K < n,
by notmg that for any 0 < 1 < v, we have p)? < p,! S* Pn,>2 so that a sufficient condition

'Vn Tn n
for P2— = o(1) is given by L2 = o(1). We only require 2~ = o(1) instead of % = o(1) for
some sequence of 7, out of being conservative. Recall that v} is the maximum of the arguments

Tn
that maximize 3 ;cp, 2054 PZQ]WY"’ so that in essence, 22— = o(1) is the weakest requirement in the
sense that it is possible for 22  o(1) for some v < =, with the property that v; maximizes
n
D icin] 2ojti P? ., yet we can still have 22— = o(1).

Similar to (D.1), under the arguments of Dovi et al. (2023)[Theorem 1], whenever assumption
1 and 7 holds, under both weak and strong identification, for r — oo and any sequence of v,

32This implies that the number of instruments diverge. We make no assumptions regarding the number of instru-
ments; in particular we allow K >> n.
33See the expression of D;; at the start of section E.5
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satisfying assumption 5, we have

Dicin] 2oji Pis €€y

v 0 2Y(B) @,(8) @5(6)
ewZinPin®s |y (0], [ ae) wie) (E3)
Zie[n]ijéiPijv’Ynjzijzj_g 0 ®l5(8) T(B) YV(B)

N

for some (@] (3), ®15(8), ®75(B), ¥ (8),77(8), Y?(B)) with 3 being the true parameter of interest.>*
We have the following power-properties, for which we omit the proof in order to avoid repetition;
the proofs are exactly the same as Theorem 3-5, with an additional use of Lemma E.1.

Theorem E.4.1. Suppose Assumption 1, 5, 7 and (E.3) holds, with r — oco. For any estimator
®"(Bo) that satisfies (E.4), we have under strong identification and fived alternative

lim P <@% (B0) > Coadfs (B (50))) =1

n—o0

and

Tim 1im P (T (B, 81 (B0)) > Cliy, o (B17(80), £)) = 1

Under weak identification with fixed alternatives, we have the following result:

Theorem E.4.2. Suppose Assumption 1, 5, 7 and (E.3) holds, with r — oco. For any estimator
" (Bo) & ®7(Bo), we have under weak identification and fized alternative that

lim P (@%(50) > Cogs *@fi(/ao))) —1-F <q1_a(J\/(O, 1)) — M)
n—oo 45T /(I)l(ﬁo)

and

n—o00 B—oo \/m

where F(-) denotes the cumulative distribution function (CDF) of a standard normal distribution.
In particular, if we assume II'MII < HI/(H — 0, then @Y" (Bo) can be taken as @Y"’K(ﬁo) for £ =
{standard,cf} given in section E.1.

; ; ol oIn Y &In A%G
lim lim P (J%(ﬁo, B (Bo)) > cafdes@ln(ﬁo),ﬁ)) —1-F | qi_aN(0,1)) — ———2—

Under strong identification and local alternative, we have the following result:

Theorem E.4.3. Suppose Assumption 1, 5, 7 and (E.3) holds, with r — oo. For any estimator
" (Bo) satisfying (E.4), under strong identification and local alternative we have

lim P (@Vi@(ﬁo) > Codf *@%(50)» =1-F <Q1—a(N(O 1)) - 525)
— o RN Gy

34Note that Dovi et al. (2023)[Theorem 1] proved the first of the three equations in (E.8), with ®](8) =
limp 00 7™ (B) for any sequence of v, satisfying assumption 5.
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and

S (8, B no (B = 2
Jim tim P (T (B0, B (80)) > Ol (17 (Bo), £)) =1~ F (qu 0.1)= m)

E.4.2 Power Properties — Fixed Rank

We discuss in this section the asymptotic-power when rank is fixed. In general, there are two
further cases to consider under fixed rank: (i) K is fixed (i1) K — oo. In either case, for K > r,
the implication is that there are K — r > 0 linearly-dependent columns; these linearly-dependent
columns provide no additional information, so that when the rank of instruments is taken to be
fixed, we can assume without loss of generality that the number of instruments is fixed, specifically,
r = K. In essence, the power-properties will be (almost) exactly the same as that described in
section 4.2.2. The only difference is that we replace assumption 4 by the following assumption:

Assumption 8. For every sequence of A, — Al € R, suppose %Zie[n] Aoi(Ay) ® Z;Z! — S(AT)
and % — Qzz, where X(AV) is positive-semi-definite and Qzyz is positive-definite matriz.
Furthermore, assume that sup; || Z;||r < oo.

By repeating the exact proof as in Theorem 6-8 and using Lemma E.1, we can obtain the
following results, which we state without proof.

Theorem E.4.4. Suppose Assumption 1, 5 7, 8, (E.3) holds and we are under fixed r. For any
estimator ®1(By) that satisfies (E.4), our test consistently differentiates the null from alternative,
1.e.

tim P (% (80) > Coapoy (B (50))) = 1

n—oo

and

lim Lim P (7% (80, 87 (60) > Ciy, (31 (80), £)) =1

n—00 B—oo
for any fized A #£ 0, whenever ;Tn2 — 00

To simplify the discussion for the power properties of the remaining cases, we assume without
loss of generality that under weak identification, pux = 7,%° while under strong identification,
dnjix = i, where 11 € RE is some constant. Denote

) . (Z'N(B0)2) A2 Z + v Ik) THZA(Bo) 2) M
Q =1
(50) nl—{go Zze[n] Pii,’y;';o—z?(ﬂO)

and assume it is well-defined. We have the following result:

35Under weak identification, phpux = f2 — [i° € R. This implies that pux must be bounded. By Bolzano-
Weierstrass, for every sub-sequence of ik, there exists a further sub-sequence pr,; that converges to p, where
i 1 = 1i2. Therefore, instead of arguing along sub-sequences, the simplification that px = [ allows us to argue along
the full sequence.
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Theorem E.4.5. Suppose Assumption 1, 57, 8, (E.3) holds and we are under fixed r. Furthermore,

let pZL"TH'H = O(1) and suppose Q*(Bo) is well-defined. Then under strong-identification and local

alternative, for any estimator &)1’; (Bo) that satisfies (E.4),

n—oo

lim P (@% (Bo) > ca,dm@ﬁ(ﬁo))> —p (zK (Z(O)Aﬁ)'Q*(go)zK (z(oﬂg) > ql_a(Fw*))
and

lim Tim P (7% (80, B (80)) > (BT (B0), £))

n—o00 B—oo

_p (ZK (S)A7) 2" (50) 2 (2(0)A7) > QI—a(Fw*))

where w* = (w}, ..., w}) are the eigenvalues of Q*(By).

Theorem E.4.6. Suppose Assumption 1, 5 7, 8, (E.3) holds and we are under fived r. As-

sume Q*(By) is well-defined and consider any estimator 5?2 (Bo) & ®)(Bo). Then under weak-
identification and fized alternative, if we further assume that II'Il = O(1), we have

n—oo

lim P (@;: (Bo) > Clagps (B (ﬁo))> —p <z (E(Z)ﬁ)'a*(ﬁo)z (z(ﬁ)ﬁ) > ql_a(Fw*))
and

lim Tim P (7% (8o, B7° (80)) > Clly, (BT (B0), £))

n—o0 B—oo

=P (zK (@)7) @ @02k (S B)7) > ql—a<Fw*>>

where w* are the eigenvalues of Q*(Bo).In particular, if we assume IT' MTI < HITH — 0, then (/I;f; (Bo)
can be taken as @Y"’Z(ﬂo) for € = {standard, cf} given in section E.1.

E.5 Proofs for section E

The proofs are analogous to what we have shown before in section 4. We require a technical lemma
needed for the proofs later on, which is provided by Dovi et al. (2023). We begin by introducing
some intuition. We can apply the singular-value-decomposition for our n x K matrix Z as follows:

Z =SV’

where S € R™ " is such that S’S = 85’ = I,,, V € REXK is such that V'V = VV’ = Ik, and
Y. € R"*K ig guch that it can be written as

= ( D 0% (K—r) )
O(n—r) Xr O(n—r) X(n—r)
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and D € R™" is a diagonal-matrix with elements {Dj; };c[,)- We can then rewrite

Py, = SSV/(VE'SV' 4+ 4,I5) " WVE'S' = SS(Z'S + yulx)Y'S = SDS'

~ ~ 2
where D = N(X'Y + v,1x) 1Y € R™™ is a diagonal-matrix given by entries Dy = Df j:7 for
i € [r] and zero otherwise. Note that these diagonal entries of D are also the eigenvalues of P,

The only additional technical lemma needed for the proofs later on is given as follow:

Lemma E.1 (Dovi et al. (2023) Lemma 1). Fiz n > 3. For all i,j,m = 1,...,n and v, > 0 if
r=K and v, >0 forr < K , one has

(i) 0<(Py,)% < Pin,. for all positive integers £
(i) D (Pina)® = (P)f; < Pijn

i€[n]

D2

) 3 Pan = 3 g <
icn] iglr] ~u "

(@) |Pijon] <1
(v) for any o C {1,...,n}? and T3 C {1,...,n}>,

(a) Z(Pij,7n>4 <,

I

(0) Y (Pijna)*(Piman)? <7
I3

Lemma E.1 shows that the ridge-projection matrix has similar properties to the usual projection.
Therefore many of the proofs can be repeated with appropriate replacement (i.e. replace K and P
with r and Py, respectively).

Proof of Theorem E.3.1: Note that Sy = 8 since we are under the null. We separate our proof
into two cases: (i) r is fixed and (ii) r — oo. The fixed r case follows in exactly the same way as
the proof of Theorem 2 - Fixed K case. In particular, we can show that

0% (Bo) — 3w,
i€(r]

. . . * * o, .
where w* := (w7, ...,w})" is the limit of w, where w™ is the eigenvalues of

(Z'MBo)2)"*(Z'Z + i) M (Z'M(Bo) 2)"

T =
Q" (Bo) - > icin) Piige?(Bo)
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Furthermore, we can show that F’ vy F+. Finally we can show that
~ k

W, .
nj

ey S

2 e (@;7)2 + 1/df 2{[w*||

This concludes the proof for the fixed r case. The diverging r case follows in exactly the same way
as the proof of Theorem 2 - Diverging K case. In particular, we can show

1 2
vr Zzé[n] ‘Pii7’Y:Lei Zie[n] Zj;éz‘ Pij,’y;;eiej -

— (@’”L(ﬁo) - 1) = — N(0,1) (E.9)
7" (Bo) r®7* (8o)
and
F_:—1
Ln ~ N(0,1).

V2 it (B15)2 + 1/df

To see (E.9), note that (E.7) implies assumption 1, 5 and 7, which in turn implies (E.8). An
analogous proof to Lim et al. (2024)[Theorem A.1.] yields

Liel) Ljpi Piani®i®s _ Liew) 2izi Piini® )
v ) vr o

so that combining with (E.8) completes the proof for the diverging r case.
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