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Abstract

Current estimators are generally biased if treatment assignment is correlated with unobserved

confounders, even when the number of pre-treatment periods goes to infinity. Ferman and Pinto

(2021) show that a demeaned version of the SC method can substantially improve in terms of bias

and variance relative to the difference-in-difference estimator; however, their proposed method

assumes that (1) the number of control-unit increases and (2) error term and common-factors are

asymptotically independent. Most commonly in empirical settings, (1) may not be sufficiently

satisfied, leading to finite sample bias. This paper proposes a test that can consistently estimate

the correct null when (1) control-units are fixed and (2) error terms and common-factors are

dependent.
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1 Introduction

In estimating treatment effects when the number of treated units are few, usual methods generally

tend to fail due to the lack of asymptotic approximation. Abadie, Diamond, and Hainmueller

(2010) proposed the synthetic control (SC) method, which works by estimating a weighted-average

of control-units in the pre-treatment period and reconstructing the counterfactual treatment effect

of the treated unit during the treatment period. A key requirement of this approach is that

there exist weights such that a weighted average of the control-units can perfectly reconstruct the

outcomes of the treated unit for a set of pre-treatment periods, called “perfect pre-treatment fit”.

An important contribution by Ferman and Pinto (2021) is the introduction of “imperfect-fit”,

where such weights may not exist. In particular, they introduce a demeaned-version of the SC

method that eliminates this problem, allowing consistent estimation/inference. However, a key

requirement is that the number of control-units diverge to infinity. In fact, Ferman (2021) showed
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that even when the number of control-units is larger than the number of pre-treatment periods,

well-known estimators are generally consistent. To under the difficulty of estimation under a fixed

number of control-units, according to Ferman and Pinto (2021), “If potential outcomes follow a

linear factor model structure, then it would be possible to construct a counterfactual for the treated

unit if we could consistently estimate the factor loadings. However, with fixed control units, it is

only possible to estimate factor loadings consistently under strong assumptions on the idiosyncratic

shocks (e.g. Bai (2003).” The main reason for the number of control-units increasing is so that the

variance of the error becomes negligible. This error variance is given as σ2
ε in (2.3), which disrupts

the recovery of our factor loading for our treated-unit from the pre-treatment period. Our paper

contributes to the literature by providing a consistent test that allow the number of control-units

to be fixed.

Structure of Paper: Section 2 provides the motivation and model setup of our paper. Section 3

provides the theoretical results as well as details of our proposed test in a heuristic manner. The

proofs of the result in the main text are contained in the Appendix.

2 Model Setup

We are interested in testing

H0 : α0t = α versus H1 : α0t ̸= α

at some time point t. We assume that we observe a balanced panel with J + 1 individuals, from

time t = 1 to T := T0+T1, where T0 is the number of periods that no individuals are treated; T1 is

the number of periods that individual j = 0 is treated, with the remaining individuals j = 1, ..., J

still untreated. Following Chernozhukov, Wuthrich, and Zhu (2021) and Ferman and Pinto (2021),

we make the general assumptions for our model.

Assumption 1. (potential outcome) The potential outcome for unit j at time t for the treated (yIjt)

and non-treated (yNjt ) are given by

yNjt = cj + δt + λ′
tµj + εjt

yIjt = αjt + yNjt (2.1)

where δt is an unknown common factor with constant factor loadings across units, cj is an unknown

time-invariant fixed effect, λt is a (F×1) vector of common factors, µj is a (F×1) vector of unknown

factor loadings, and the error terms εjt are unobserved idiosyncratic shocks

Assumption 2. (sampling) We observe a realization of {y0t, . . . , yJt}t∈T0∪T1, where yjt = djty
I
jt+

(1− djt) y
N
jt , while djt = 1 if j = 0 and t ∈ T1, and zero otherwise. Potential outcomes are
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determined by assumption 1. We treat {cj , µj}Jj=0 as fixed, and {λt}t∈T0∪T1 and {εjt}t∈T0∪T1 for

j = 0, . . . , J as stochastic

To motivate the problem, consider the synthetic control weights in Abadie et al. (2010) given

as

ŴSC := argmin
W∈∆J

η

1

T0

∑
t∈T0

(y0t − y′tW )2.

Fixing an W ∈ ∆J
η , let

Q̂T0(W ) :=
1

T0

∑
t∈T0

(y0t − y′tW )2

=
1

T0

∑
t∈T0

{
c0 + δt + λ′

tµ0 + ε0t − (c′W + δtι
′W + λ′

tµW + ε′tW )
}2

(i)
=

1

T0

∑
t∈T0

{
(c0 − c′W ) + λ′

t(µ0 − µW ) + (ε0t − ε′tW ))
}2

(2.2)

where µ := (µ1, ..., µJ)
′, and (i) follows from ι′W = 1. Under some mild assumptions (see Ferman

and Pinto (2021)[assumption 4]),

Q̂T0(W )
p→ Q0(W ) := σ2

ε(1 +W ′W ) +
[
(c0 − c′W )2 + (µ0 − µW )′Ω0(µ0 − µW )

]
, (2.3)

where it is assumed that 1
T0

∑
t∈T0 ε̃tε̃

′
t

p→ σ2
εIJ+1 for ε̃t := (ε0t, ε

′
t)
′. Then it can be argued that

W̃SC p→ W := argmin
W∈∆J

η

Q0(W )

We see that the σ2
ε given in (2.3) prevents us from recovering the pre-treatment weights, i.e. the

variance of the error coming from ε0t − ε′tW given in (2.2). Ferman and Pinto (2021) explains that

the only way to fully recover the pre-treatment weights is for σ2
ε = 0 or for the existence of some

W ∈ Φ̃|W ∈ argminW :||W ||=1{W ′W}, which may not always hold. In view of this short-coming,

Ferman (2021) suggests that ”when the number of control units increases, the importance of the

variance of this weighted average of the idiosyncratic shocks vanishes if it is possible to recover the

factor-loadings of the treated unit with weights that are diluted among an increasing number of

control units”. However, the two assumptions needed are

(1)
1

T0

∑
t∈T0

λtεt
p→ 0

(2) the number of control-units increases
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Another way to remove the error σ2
ε is to break the non-treated sample T0 into sub-samples and

run a block synthetic control weight, since this will allow the error terms to be negligible by their

mean-zero property; we call this new estimator Q̃t0(W ), i.e. we can obtain

argmin
W

Q̃T0(W )
p→ argmin

W
Q0(W ) (2.4)

for Q0(W ) = (c0 − c′W )2 + (µ0 − µW )′Ω0(µ0 − µW ), which generally holds under mild regularity

conditions and Ω0 being positive-definite. This is due to the strict convexity of Q0(W ) leading to

a unique solution of argminQ0(W ). Therefore, intuitively, the block synthetic weights approach

can remove the need for the number of control units to increase. However, when Ω0 is only positive

semi-definite, the solution set of argminQ0(W ) may not be unique, preventing the type of logic

used in (2.4) to hold. We overcome this by adding a ridge term. Our paper contributes to the SC

literature in obtaining consistent confidence intervals around α0t under the true null, while relaxing

both assumptions (1) and (2), i.e. we allow Ω0 to be only positive semi-definite and the number of

controls to be fixed.

3 Theory

Suppose first that we have an estimator W̃SC of some sort, such that W̃SC P→ W , with W ∈ Φ̃ :=

{W ∈ ∆J
η : W ′c = c0 and W ′µ = µ0} and ∆J

η := {W ∈ RJ : ||W || ≤ η} for some η > 0 that will be

specified later. Define Φ̃∗ := {W ∈ ∆J
η : c′W = c0}. Then we have the following corollary, which is

useful when 1
T0

∑r
s=1 λ

s
(λ

s
)′

p→ 0 (see later theorem).

Corollary 3.1. Suppose W̃SC P→ W ∈ Φ̃∗. Then as T0 → ∞, for any fixed t ∈ T1,

α̂0t := yI0t − y′
tŴ

SC p→ α0t + λt

(
µ0 − µ′W

)
+
(
ε0t − ε′tW

)
If furthermore, we have that W̃SC P→ W ∈ Φ̃, then

α̂0t
p→ α0t + λt

(
µ0 − µ′W

)
+
(
c0 − c′W

)
+
(
ε0t − ε′tW

)
= α0t +

(
ε0t − ε′tW

)

We want to apply Theorem 1 of Chernozhukov et al. (2021) to both cases of W given in corollary

3.1, in order to obtain a conformal inference under the null. For any t ∈ T1, we define ût := −P̂N
t ,

where P̂N
t := α0t − α̂0t. For t ∈ T0, define ût := yN0t − y′

tŴ
SC . For any t ∈ T0 ∩ T1, define

PN
t := W

′
yNt − yN0t .

Denote Ŝ(û) := T
−1/2
1

∣∣∑
t∈T1 ût

∣∣. Let T0 = {1, ..., T0} and T1 = {T0 + 1, ..., T}. We define the
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moving permutation for m ∈ {0, 1, ..., T − 1} as Π := {πm}T−1
m=1, where

πm(i)

{
i+m if i+m ≤ T

i+m− T otherwise

Then define the p-value as

p̂ :=
1

|Π|
∑
π∈Π

1{S(ûπ) ≥ S(û)} (3.1)

For notational simplicity, define εt := (ε1t, ..., εJt)
′ and yt := (y1t, ..., yJt)

′. Throughout the rest of

the paper, We assume T1 is fixed, and T0 → ∞.

Theorem 1. Suppose W̃SC p→ W . Assume supt E||λt||, supt E||εt|| ≤ C < ∞ for some constant

C. If any of the cases hold,

(i) W ∈ Φ̃

(ii) W ∈ Φ̃∗ and Eλt = 0

(iii) W ∈ Φ̃∗ and
1

T

T∑
t=1

λtλ
′
t = op(1)

(iv) W ∈ Φ̃∗ and
1

T

T∑
t=1

E||λt||2 = o(1)

then under the correct null of α0t, for any θ ∈ (0, 1),

|P(p̂ ≤ θ)− θ| = op(1)

3.1 Block Synthetic control for fixed Λ

Consider a r-fold cross-fitting procedure, where we fix r ∈ N and define ∆ := ⌊T0
r ⌋. Then ∆

can be seen as the number of elements we want to fit in a single block (in the general case we

can take ∆ to be the ceiling of T0
r ). Then for any j ∈ {0, 1, ..., J}, and s ∈ {1, ..., r} and q ∈

{1, ...,∆} define εsjq := εj,s∆+q and εs := 1
∆(εs∆+1 + εs∆+2 + ... + ε(s+1)∆). Furthermore, write

ys := 1
∆(ys∆+1 + ys∆+2 + ...+ y(s+1)∆). Then we can define the block-synthetic weight

W̃SC
T (Λ) := argmin

W∈∆J
η

1

r

r∑
s=1

{
ys0 − (ys)′W

}2
+ Λ||W ||2

where Λ > 0 is some fixed value.
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Assumption 3. Suppose T1 is fixed, T0 → ∞, ∆ → ∞, Eεjt = 0 and E||λt||2,Eδ2t ,E(εjt)2 ≤ σ2 <

∞ for every j ∈ {0, 1, ..., J} and t ∈ {1, ..., T0}. Furthermore, suppose 1
T0

∑
t∈T0 ε̃tε̃

′
t

p→ σ2
εIJ+1,

1
T0

∑T0
t=1 λt

p→ 0 and 1
T0

∑
t∈T0 λtλ

′
t

p→ Ω0, a positive semi-definite matrix.

Unlike Ferman and Pinto (2021)[Assumption 4], we do not require 1
T0

∑
t∈T1 λtεt = op(1) - these

assumptions could be satisfied under stronger conditions such as α-mixing with exponential speed,

but may be hard to ascertain - to derive our asymptotic results. Rather, assumption 3 implies that

this term is Op(1).

Assumption 4. (Solution existence) Suppose at least one solution to GW = G0 exists, where

G0 :=

(
c0

µ0

)

and G := (c, µ)′. Furthermore, assume the chosen η is such that there exists some W ⋄ being the

solution with ||W ⋄|| ≤ η.

Empirically, we can always choose η to be very large to ensure that some solutions fall within the

prescribed ∆J
η . In the event that G has full column rank, W = (G′G)−1G′(c0, µ

′
0)

′ is the solution

to GW = G0. The only time when assumption 4 fails is when G0 is not a linear combination of G.

When the number of covariates is large, this scenario will be unlikely.

Theorem 2. Suppose assumption 1, 2, 3 and 4 holds. Then for any fixed γ > 0,

sup
Λ∈[γ,1]

|W̃SC
T (Λ)−W (Λ)| = op(1)

where W (Λ) := argminW∈∆J
η
A(W,Λ) and A(W,Λ) := (c0 − c′W )2 + (µ0 − µW )′Ω0(µ0 − µW ) +

Λ||W ||2. Furthermore, as 0 < Λ ↓ 0,

W (Λ) → W ∗

where W ∗ is the minimum-norm vector among the set of vectors that solves GW = G0.

Remark 1. If we can strengthen Ω0 in assumption 3, then Theorem 2 holds for γ = 0. In this

case, we can have that for any sequence of ΛT ↓ 0,

W̃SC
T (ΛT ) = W ∗ + op(1).

Then an application of Theorem 1 yields exact asymptotic size control under the correct null.

Note thatW ∗ is unique by Lemma A.1. The difficulty in taking γ = 0 stems from the assumption

that Ω0 = PlimT0→∞
1
T0

∑
t∈T0 λtλ

′
t is only positive semi-definite, which implies that the solution
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set of the probability limit of W̃SC
T (0) may not be unique. The implication is that W̃SC

T (0) can

potentially converge in probability to any W ∈ Φ̃ due to this lack of identification. To be specific,

note that for any Λ > 0,

W (Λ) = (ΛI + cc′ + µ′Ω0µ)
−1(µ′Ω0µ0 + c0c).

As Λ ↓ 0, the inverse diverges to infinity. This prevents W (Λ) from being equi-continuous in

Λ ∈ (0, 1]; consequently we are not able select a finite number of points Λi ∈ (0, 1] such that the

union of balls around Λi covers the interval (0, 1] and the probability that any Λ ∈ (0, 1] is covered

by one of the balls lipschitz continuous. However, the next corollary shows us that we can have

an ”almost-consistent” estimator of the solution set GW = G0 if we take Λ > 0 to be arbitrarily

small.

Corollary 3.2. Suppose assumption 1, 2, 3 and 4 holds. Then for any ξ > 0, there exists a

Λ(ξ) > 0 such that for any fixed 0 < Λ ≤ Λ(ξ),

|W̃SC(Λ)−W ∗| ≤ ξ + op(1)

Furthermore, Theorem 2 assures us that there is some sequence of ΛT such that W̃SC
T (ΛT )

consistently estimates W ∗. This is formalized below.

Corollary 3.3. Suppose assumption 1, 2, 3 and 4 holds. Then there exists a sequence 0 < ΛT ↓ 0

such that

W̃SC
T (ΛT ) = W ∗ + op(1)

By an application of corollary 3.3 and Theorem 1, we see that under the null, we can apply

Theorem 1 for p̂ in (3.1) and obtain conformal inference if we have an idea of the rate of ΛT

is. Despite this difficulty, we can obtain an ”almost exact” size control for any given Λ ∈ (0, 1].

Intuitively, by choosing a small enough Λ, W̃SC
T (Λ) should be approximately W ∗ asymptotically.

We should therefore have an ”almost-exact” size control in the sense of theorem 1 for small enough

Λ. This is formalized in Theorem 3 below.

For any t ∈ T1, define

α̂0t(Λ) := yI0t − y′
tW̃

SC
T (Λ)

P̂N
t (Λ) := α0t − α̂0t(Λ) =: −ût(Λ)
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PN
t := W ∗′yN

t − yN0t =: −ut

Ŝ(û(Λ)) := T
−1/2
0 |

∑
t∈T0

ût(Λ)|

p̂(Λ) :=
1

Π

∑
π∈Π

1{S(ûπ(Λ)) ≥ S(û(Λ))}

Theorem 3 (Main result). Suppose assumption 1-4 holds. Assume S(u) has pdf bounded above by

D, and {ut}Tt=1 is stationary and strong-mixing. Under the correct null of α0t, fixing any Λ ∈ (0, 1]

and θ ∈ (0, 1), we have

|P(p̂(Λ) ≤ θ)− θ| ≤ C

{
(T1/T0)

1/4logT0 +max(C1, C2) · ||W (Λ)−W ∗||

+max(C
1/2
1 , C

1/2
2 ) · ||W (Λ)−W ∗||1/2

}
+ γT

where C1 := 2
√

(||c||2 + 2||µ||2σ2), C2 := ||c|| + σ2||µ|| + σ2, C is some universal constant, and

γT = o(1) is such that with probability at least 1− γT ,

||P̂N (Λ)− PN ||2/
√
T ≤ C1||W (Λ)−W ∗||,

i.e. the speed of convergence of W̃SC
T to W (Λ).

Remark 2. y Theorem 2, as 0 < Λ ↓ 0 then W (ΛT ) → W ∗. Combining with Theorem 3, there

exists some 0 < ΛT ↓ 0 such that |P(p̂(ΛT ) ≤ θ)− θ| = o(1). This rate is generally unknown unless

we impose more assumptions on the structure on the model. In practice, we can simply employ a

very small ΛT ≈ 0 so that the estimation error is negligible.

3.2 Block synthetic control is efficient under mis-specification

In this section we explore the asymptotic variance of different estimators of α0t, i.e. the treatment

effect. For every Λ > 0 and t ∈ T1, recall that we defined our block estimator as

α̃SC
t (Λ) := yI0t − y′tW̃

SC
t (Λ).

By Theorem 2 we see that

α̃SC
t (Λ)

p→ α0t + yN0t − y′tW
∗ − y′t

(
W (Λ)−W ∗)

= α0t + y′t(W (Λ)−W ∗)

= α0t + (c+ ιδt + µλt + εt)
′(W (Λ)−W ∗) (3.2)
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so that

avar(α̃SC
t (Λ)) = (W (Λ)−W ∗)′(V ar(δt)ιι

′ + µ V ar(λt)µ
′ + σ2I)(W (Λ)−W ∗)

≤ σ2(W (Λ)−W ∗)′(ιι′ + µµ′ + I)(W (Λ)−W ∗)

≤ σ2||W (Λ)−W ∗||2λmax(Σ)

where Σ := ιι′ + µµ′ + I

Next, we show that α̃SC
t (Λ) is more efficient than the class of estimators

α̂t(W ) := [y0t − y′tW ] +
1

T0

∑
τ∈T0

[y0τ − y′τW ] (3.3)

for any W ∈ RJ , when 0 < Λ ≤ Λ, for some Λ. Note that the difference-in-difference (DID)

estimator is a special case of (3.3) with W = W∗ := ( 1J , ...,
1
J )

′ (e.g. Doudchenko and Imbens

(2016)), i.e.

α̂DID
t := α̂t(W∗)

We assume σ2
ε > 0 for simplicity. As shown in Ferman and Pinto (2021)[proposition 3], under

assumptions 1-3, as T0 → ∞, then for any t ∈ T1, for any W̃
p→ W , we have

avar(α̂t(W̃ )) = σ2
ε(1 +W ′W ) + (c0 − c′W )2 + (µ0 − µ′W )′Ω0(µ0 − µW ) ≥ σ2

ε

By Theorem 2 we know that there exists some Λ > 0 such that for every 0 < Λ ≤ Λ, then

||W (Λ) − W ∗|| ≤ σ2
ε

σ2λmax(Σ)
. In particular, for every 0 < Λ ≤ Λ, α̃SC

0t is more efficient than the

DID estimator.
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A Auxiliary Lemmas

Lemma A.1. Let A ∈ Rm×n, so that by singular value decomposition we can write A = UΣV ′,
where Σ ∈ Rm×n has non-zero elements only on its diagonal, with these values equal σ1, ..., σr. The
minimum-norm least squares solution to the linear equation AX = b, that is, the shortest vector X
that achieves

min
X

||AX − b||2 ≡
n∑

i=r+1

(U ′
ib)

2

is unique, given by

X̂ = V Σ†U ′b

where

Σ† =



1/σ1 0 · · · 0
1/σ2

. . .
...

...

1/σr
...

...
0
...

. . .

0 · · · 0


Also, ||X̂||2 =

∑r
i=1(U

′
ib/σi)

2

Lemma A.1:
The least square solution to AX = b can be written as

min
X

||UΣV ′X − b|| = min
X

||U(ΣV ′X − U ′b)|| (i)= min
X

||(ΣV ′X − U ′b)|| (ii)= min
y

||(Σy − c)||

where (i) follows from the fact that U is orthogonally-normalized so that the euclidean-norm remains
unchanged; (ii) follows by defining y := V ′X and c := U ′b. We want to minimize the vector

σ1 0 · · · 0 0
. . . 0

σr
...

0
...

. . .
...
0





y1
...
...
yr
yr+1
...
yn


−



c1
...
...
cr
cr+1
...
cn


which leads to the solution

yi =
ci
σi

for i ∈ 1, ..., r
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with the choice of yi to be any number for i ∈ r + 1, ..., n. However, note that by V V ′ = I, we
have ||X|| = ||V ′X|| = ||y||. In order to minimize ||X|| we have to minimize ||y||, which forces us
to choose yi := 0 for i ∈ r+ 1, ..., n, i.e. y = Σ†c is the unique solution to the minimum-norm least
square problem. Solving for X yields

X̂ = V y = V Σ†c = V Σ†U ′b

It is clearly unique. Furthermore, since yi ≡ 0 for i = r + 1, ..., n

min
X

||AX − b|| = ||AX̂ − b|| = ||(−cr+1, · · · ,−cn)|| =
n∑

i=r+1

(U ′
ib)

2.

Finally,

||X̂||2 = ||V y||2 = ||y||2 =
r∑

i=1

(ci/σi)
2 =

r∑
i=1

(U ′
ib/σi)

2

B Proof of Theorem 1

Define yt := (y1t, ..., yJt)
′. Using the notations of Chernozhukov et al. (2021), consider the respective

models:
Case (i),(ii)

PN
t := W

′
yNt − yN0t =: −ut

Case (iii)

PN
t := W

′
yNt − yN0t −W

′
µλt =: −ut

Case (iv)

PN
t := W

′
yNt − yN0t −W

′
µEλt =: −ut

Then note that Eut = 0 for all cases; defining γt ≡ 0 for case (i) and (ii), γt := W
′
µλt in case (iii),

γt := W
′
µEλt in case (iv), we have

P̂N
t − PN

t = −(yI0t − y′tW̃
SC − α0t)−W

′
yNt + yN0t − γt

= −(yN0t − y′tW̃
SC)−W

′
yNt + yN0t − γt

= (W̃SC −W )′yNt − γt

= (W̃SC −W )′c+ (W̃SC −W )′µλt + (ŴSC −W )′εt − γt

where c := (c1, ..., cJ)
′, ι ∈ RJ is the vector of ones, and (W̃SC −W )ιδt = 0 since W̃SCι = 1 = Wι,

as ŴSC ,W ∈ ∆J
η . Therefore, by noting the simple inequality of (a+ b+ c+ d)2 ≤ 8a2 + 8b2 + 8c2

12



+ 8d2,

||P̂N − PN ||22/T =
1

T

T∑
t=1

(P̂N
t − PN

t )2

≤ 8
{
(W̃SC −W )′c

}2
+ 8||(W̃SC −W )′µ||2

{
1

T

T∑
t=1

||λt||2
}

+ 8||(W̃SC −W )′µ||2
{

1

T

T∑
t=1

||εt||2
}

+ 8
1

T

T∑
t=1

γ2t = op(1)

under our assumptions. This satisfies assumption 3.1 of Chernozhukov et al. (2021). Furthermore,
for any t ∈ T1,

|P̂N
t − PN

t | = op(1) as T0 → ∞

since E||λt||2,E||εt||2 < σ2 < ∞ by assumption, Markov inequality, and W̃SC p→ W . This satisfies
assumption 3.2 of Chernozhukov et al. (2021), so that an application of Theorem 1 of Chernozhukov
et al. (2021) yields the result.

C Proof of Theorem 2

Step 1: We show that for any W ∈ ∆J
η ,

1

r∆2

r∑
s=1


∆∑
q=1

(εs0q − (εsq)
′W )


2

= op(1) (C.1)

Fix any W ∈ ∆J
η and observe

1

r∆2

r∑
s=1


∆∑
q=1

(εs0q − (εsq)
′W )


2

=
1

r∆2

r∑
s=1

∆∑
q=1

(εs0q − (εsq)
′W )2 + 2

1

r∆2

r∑
s=1

∆∑
ℓ=1

ℓ−1∑
q=1

(εs0ℓ − (εsℓ)
′W )(εs0q − (εsq)

′W )

=
1

T0∆

T0∑
t=1

(ε0t − ε′tW )2 ++2
1

r∆2

r∑
s=1

∆∑
ℓ=1

ℓ−1∑
q=1

(εs0ℓ − (εsℓ)
′W )(εs0q − (εsq)

′W )

≡ A1 +A2.

We will show that A1, A2 = op(1). Noting the simple inequality of (a+ b)2 ≤ 2a2 + 2b2,

A1 ≤
1

T0∆

T0∑
t=1

ε20t +
1

∆
W ′(

1

T0

T0∑
t=1

εtε
′
t)W

13



=
1

∆
(σ2

ε + op(1)) +
1

∆
W ′(σ2

εIJ + op(1))W = op(1)

as ∆ → ∞. To deal with A2, for notational simplicity, define Xs
0,ℓ :=

∑ℓ−1
q=1(ε

s
0ℓ − (εsℓ)

′W )(εs0q −
(εsq)

′W ). Then we have

var(A2) =
4

r2∆4
var(

r∑
s=1

∆∑
ℓ=1

Xs
0,ℓ)

(i)
=

4

r2∆4

r∑
s=1

var(
∆∑
ℓ=1

Xs
0,ℓ) =

4

r2∆4

r∑
s=1

E

{
∆∑
ℓ=1

Xs
0,ℓl

}2

=
4

r2∆4

r∑
s=1

∆∑
ℓ=1

∆∑
m=1

E(Xs
0,ℓX

s
0,m)

(ii)
=

4

r2∆4

r∑
s=1

∆∑
ℓ=1

E(Xs
0,ℓ)

2

(iii)

≤ 8σ2

r2∆4

r∑
s=1

∆∑
ℓ=1

(ℓ− 1) =
8σ2

T0∆2

∆∑
ℓ=1

(ℓ− 1) ≤ 8σ2

T0
= o(1)

where (i) follows from independence between blocks and E
(∑∆

ℓ=1X
s
0,ℓ

)
= 0; (ii) follows from the

observation that, for any ℓ ̸= m (we can w.l.o.g. assume ℓ < m),

E(Xs
0,ℓX

s
0,m) = E

ℓ−1∑
q=1

m−1∑
h=1

{εs0ℓ − (εsℓ)
′W}{εs0q − (εsq)

′W}{εs0m − (εsm)′W}{εs0h − (εsh)
′W}


=

ℓ−1∑
q=1

m−1∑
h=1

E
(
εs0,m − (εsm)′W

)
· E
(
{εs0ℓ − (εsℓ)

′W}{εs0q − (εsq)
′W}{εs0h − (εsh)

′W}
)
= 0;

(iii) follows from

E(Xs
0,ℓ)

2 =
ℓ−1∑
q=1

ℓ−1∑
h=1

E
(
εs0ℓ − (εsℓ)

′W
)2 · E

(
(εs0q − (εsq)

′W ) · (εs0h − (εsh)
′W )

)
=

ℓ−1∑
q=1

E
(
εs0ℓ − (εsℓ)

′W
)2 · E

(
εs0q − (εsq)

′W
)2 (iv)

≤ 2(ℓ− 1)σ2

where (iv) follows from

E
(
εs0q − (εsq)

′W
)2

= E(εs0q)
2 +

J∑
j=1

W 2
j E(εsi,q)

2 ≤ σ2 + σ2
J∑

j=1

Wj = 2σ2

so A2 = op(1) by Markov-inequality and the fact that EA2 = 0. Therefore (C.1) is shown.

step 2: Define

ÃT0(W,Λ) :=
1

r

r∑
s=1

{ys0 − (ys)′W}2 + Λ||W ||2

14



and

A(W,Λ) := (c0 − c′W )2 + (µ0 − µW )′Ω0(µ0 − µW ) + Λ||W ||2,

we want to show that

sup
(W,Λ)∈∆J

η×[0,1]

∣∣∣ÃT0(W,Λ)−A(W,Λ)
∣∣∣ = op(1) (C.2)

First we require a lemma:

Lemma C.1. (Corollary 2.2 of Newey (1991)) Assume (1) ∆J
η×[0, 1] is compact, (2) ÃT0(W,Λ)

p→
A(W,Λ) for every (W,Λ) ∈ ∆J

η × [0, 1], (3) ∆J
η × [0, 1] is a metric space and (4) there is a

BT0 such that BT0 = Op(1) and for all (W1,Λ1), (W2,Λ2) ∈ ∆J
η , |ÃT0(W1,Λ1) − ÃT0(W2,Λ2)| ≤

BT0 ||(W1,Λ1)− (W2,Λ2)|| and (5) {A(W,Λ)}(W,Λ)∈∆J
η×[0,1] is equi-continuous. Then ÃT0(W,Λ)

p→
A(W,Λ) uniformly over (W,Λ) ∈ ∆J

η × [0, 1]

Fixing any (W,Λ) ∈ ∆J
η × [0, 1], we have

ÃT0(W,λ) =
1

r

r∑
s=1

[
(c0 − c′W ) + (λ

s
)′(µ0 − µ′W ) + (εs0 − (εs)′W )

]2
+ Λ||W ||2

= (c0 − c′W )2 + (µ0 − µ′W )′

(
1

r

r∑
s=1

λ
s
(λ

s
)′

)
(µ0 − µ′W ) +

1

r

r∑
s=1

(εs0 − (εs)′W )2

+ 2(c0 − c′W )

(
1

r

r∑
s=1

(λs)′

)
(µ0 − µ′W ) + 2(c0 − c′W )

(
1

r

r∑
s=1

(εs0 − (εs)′W )

)

+ 2(µ0 − µ′W )′

(
1

r

r∑
s=1

λ
s
(εs0 − (εs)′W )

)
+ Λ||W ||2,

so that by

(a)
1

r

r∑
s=1

(εs0 − (εs)′W )2 =
1

r∆2

r∑
s=1


∆∑
q=1

(εs0q − (εsq)
′W )


2

= op(1) by (C.1)

(b)
1

r

r∑
s=1

(λs)′ =
1

T0

T0∑
t=1

(λt)
′ = op(1) by assumption

(c)
1

r

r∑
s=1

(εs0 − (εs)′W ) =
1

T0

T0∑
t=1

ε0t −
1

T0

T0∑
t=1

ε′tW = op(1) by assumption

(d)
1

r

r∑
s=1

λ
s
(εs0 − (εs)′W ) =

1

r

r∑
s=1

λ
s
εs0 −

1

T0

T0∑
t=1

(εt)
′W = op(1)

where the last equality in (d) follows fromMarkov-inequality, the simple inequality that E(λs
kλ

s
j,K′) ≤

15



2E(λs
j,k)

2 + 2E(λs
k′)

2 ≤ 4C by assumption, and

E

∣∣∣∣∣
∣∣∣∣∣1r

r∑
s=1

λ
s
εs0

∣∣∣∣∣
∣∣∣∣∣
2

2

=

J∑
j=1

(
1

r2

r∑
s=1

r∑
m=1

E(λ
s
jλ

m
j εs0ε

m
0 )

)
=

J∑
j=1

(
1

r2

r∑
s=1

E(λ
s
j)

2E(εs0)
2

)

=
J∑

j=1

(
1

r2

r∑
s=1

E(
1

∆

∆∑
k=1

λs
j,k)

2E(
1

∆

∆∑
k=1

εs0,k)
2

)

≤
J∑

j=1

(
1

r2

r∑
s=1

1

∆2
(

∆∑
k=1

∆∑
k′=1

4C) · 1

∆2

∆∑
k=1

E(εs0,k)
2

)

≤ 4C2J

r2∆
=

4C2J

T0r
→ 0

it follows by our assumption that

ÃT0(W,Λ)
p→ A(W,Λ) (C.3)

It is clear that ∆J
η × [0, 1] is compact, so condition (1) of Lemma C.1 is satisfied. It is clear that

condition (3) and (5) also holds, i.e. {A(W,Λ)}(W,Λ)∈∆J
η×[0,1] is equi-continuous. Condition (2)

follows from (C.3). To show (C.2), it remains to prove that condition (4) of Lemma C.1 holds,
which is what we do now.

We can remove the common time-effect from ÃT0(W ) by defining ỹs0 := ys0−δ
s
and ỹs := ys−ιδ

s
,

so that

ÃT0(W,Λ) =
1

r

r∑
s=1

{ỹs0 − (ỹs)′W + δ
s
(1− ι′W )}2 + Λ||W ||2

Then using mean value theorem, for any (W1,Λ1), (W2,Λ2) ∈ ∆J
η × [0, 1], there exists a (W3,Λ3) ∈

∆J
η × [0, 1] such that∣∣∣ÃT0(W1,Λ1)− ÃT0(W2,Λ2)

∣∣∣
=

∣∣∣∣∣
(
2

r

r∑
s=1

{ỹs0 − (ỹs)′W3}(−ỹs − δ
s
ι) + ||W3||2 + 2Λ3W3

)
· ||(W1,Λ1)− (W2,Λ2)||

∣∣∣∣∣
= BT0 ||(W1,Λ1)− (W2,Λ2)||

with

BT0 :=

∣∣∣∣∣
∣∣∣∣∣
(
2

r

r∑
s=1

{ỹs0 − (ỹs)′W3}(−ỹs − δ
s
ι) + ||W3||2 + 2Λ3W3

)∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣
(
2

r

r∑
s=1

{ỹs0 − (ỹs)′W3}(ỹs)

)∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣
(
2

r

r∑
s=1

{ỹs0 − (ỹs)′W3}δ
s

)∣∣∣∣∣
∣∣∣∣∣ · ||ι||+ ||W3||2 + 2Λ3||W3||
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≤

∣∣∣∣∣
∣∣∣∣∣2r

r∑
s=1

ỹs0ỹ
s

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣2r

r∑
s=1

ỹs(ỹs)′

∣∣∣∣∣
∣∣∣∣∣× ||W3||+

∣∣∣∣∣
∣∣∣∣∣2r

r∑
s=1

ỹs0δ
s

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣2r

r∑
s=1

ỹsδ
s

∣∣∣∣∣
∣∣∣∣∣× ||W3|| × ||ι||+ η2 + 2η

= ||2A1||+ ||2A2|| × η + ||2A3||+ ||2A4|| ×
√
Jη + η2 + 2η

where the second last inequality follows from ||W3|| ≤ η and Λ ≤ 1. We will show that BT0 = Op(1)
by showing that each term A1, ..., A4 is Op(1). Observe first that

(a)
1

r

r∑
s=1

λ
s
(λ

s
)′ = Op(1)

(b)
1

r

r∑
s=1

εs(εs)′ = Op(1)

(c)
1

r

r∑
s=1

λ
s
=

1

T0

T0∑
t=1

λt = op(1)

(d)
1

r

r∑
s=1

(εs)′ =
1

T0

T0∑
t=1

(εt)
′ = op(1)

(e)
1

r

r∑
s=1

λ
s
(εs)′ = Op(1)

(f)
1

r

r∑
s=1

εs0(ε
s)′ = Op(1)

(g)
1

r

r∑
s=1

δ
s
=

1

T0

T0∑
t=1

δt = Op(1)

(h)
1

r

r∑
s=1

δ
s
(λ

s
)′ = Op(1)

(i)
1

r

r∑
s=1

δ
s
(εs)′ = Op(1)

where (c) and (d) follows from the assumptions, (a) follows from Markov-inequality and

E

∣∣∣∣∣
∣∣∣∣∣1r

r∑
s=1

λ
s
(λ

s
)′

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

r∆2

r∑
s=1

E

∣∣∣∣∣
∣∣∣∣∣

∆∑
m=1

λs
m

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1

r∆2

r∑
s=1

∆∑
m=1

∆∑
ℓ=1

E (||λs
m|| · ||λs

ℓ ||)

≤ 2

r∆2

r∑
s=1

∆∑
m=1

∆∑
ℓ=1

(
E||λs

m||2 + E||λs
ℓ ||2
)
≤ 2σ2,
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(b) follows in an analogous manner, (e) follows from Markov inequality and

E

∣∣∣∣∣
∣∣∣∣∣1r

r∑
s=1

λ
s
(εs)′

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

r

r∑
s=1

E

(
|| 1
∆

∆∑
m=1

λs
m|| · || 1

∆

∆∑
m=1

εsm||

)

≤ 1

r∆2

r∑
s=1

∆∑
m=1

∆∑
ℓ=1

E (||λs
m|| · ||εsm||) ≤ 2σ2,

(f) follows from Markov inequality and

E

∣∣∣∣∣
∣∣∣∣∣1r

r∑
s=1

εs0(ε
s)′

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

r

r∑
s=1

E

(
|| 1
∆

∆∑
m=1

εs0,m|| · || 1
∆

∆∑
m=1

εsm||

)

≤ 1

r∆2

r∑
s=1

∆∑
m=1

∆∑
ℓ=1

E
(
||εs0,m|| · ||εsm||

)
≤ 2σ2,

(g) follows from Markov inequality and bounded second moment of δt, both (h) and (i) follows in
the same way as (e).

We can show A1, ..., A4 = Op(1) by writing

A1 =
1

r

r∑
s=1

(c0 + µ′
0λ

s
+ εs0)(c+ µ′λ

s
+ εs)′

= coc+ c0µ · 1
r

r∑
s=1

λ
s
+ c0(

1

r

r∑
s=1

εs) + cµ′
0(
1

r

r∑
s=1

λ
s
) + µ′

0(
1

r

r∑
s=1

λ
s
(λ

s
)′)µ

+ µ′
0(
1

r

r∑
s=1

λ
s
(εs)′) + (

1

r

r∑
s=1

εs0)c
′ + (

1

r

r∑
s=1

εs0(λ
s
)′)µ+

1

r

r∑
s=1

εs0(ε
s)′,

A2 =
1

r

r∑
s=1

(c+ µ′λ
s
+ εs) · (c+ µ′λ

s
+ εs)′

= cc′ + µ′

(
1

r

r∑
s=1

λ
s
(λ

s
)

)
µ+

1

r

r∑
s=1

εs(εs)′

+ 2c

(
1

r

r∑
s=1

λ
s

)
µ+ 2c

1

r

r∑
s=1

(εs)′ + 2µ′

(
1

r

r∑
s=1

λ
s
(εs)′

)
,

A3 =
1

r

r∑
s=1

δ
s
(c+ µ′λ

s
+ εs)′ = (

1

r

r∑
s=1

δ
s
)c′ + (

1

r

r∑
s=1

δ
s
(λ

s
)′)µ+

1

r

r∑
s=1

δ
s
(ε)′

A4 =
1

r

r∑
s=1

(c+ µ′λ
s
+ εs)δ

s
= c(

r∑
s=1

δ
s
) + µ′(

r∑
s=1

λ
s
δ
s
) +

r∑
s=1

εsδ
s

and then applying (a) − (i). Therefore condition (4) of Lemma C.1 is shown, implying (C.2)
and (??)
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Step 3: We show that for any fixed γ > 0,

sup
Λ∈[γ,1]

∣∣∣W̃SC(Λ)−W (Λ)
∣∣∣ = op(1), (C.4)

where W (Λ) = argminW∈∆J A(i)(W,Λ) in case (i), or W = argminW∈∆J A(ii)(W,Λ) in case (ii).

Lemma C.2. (Newey and McFadden (1994)[Theorem 2.1]) Suppose there is a function Q0(θ) such
that it is (i) uniquely minimized at θ0; (ii) Θ is compact, where θ ∈ Θ; (iii) Q0(θ) is continuous

and (iv) supθ∈Θ |Q̂(θ)−Q0(θ)| = op(1). Then for θ̂ := argmin Q̂(θ), we have θ̂
p→ θ0

We first show point-wise convergence of W̃SC(Λ) for every Λ ∈ (0, 1]. Replace Θ by ∆J
η , which

is compact. We fix any Λ and replace Q0(θ) by A(Λ,W ). Since A(Λ,W ) is strictly convex, it has
a uniquely-minimized solution. Clearly A(W,Λ) is continuous in Θ and condition (iv) of Lemma
C.2 follows from equation (C.2), with Q̂(θ) as ÃT0(W,Λ). Therefore we have

W̃SC(Λ)
p→ W (Λ) (C.5)

for every fixed Λ ∈ (0, 1]. This satisfies condition (2) of Lemma C.1. Since [γ, 1] is compact,
condition (1) is satisfied. Condition (3) is clear. To show that W (Λ)Λ∈[γ,1] is equi-continuous, first
observe that

W (Λ) = (ΛI + cc′ + µ′Ω0µ)
−1(µ′Ω0µ0 + c0c)

We can take the spectral decomposition of cc′ + µ′Ω0µ = V DV ′, where V V ′ = I = V ′V and D is
the diagonal matrix with non-negative eigenvalues (d1, ..., dJ) as its elements. Define DΛ = D+ΛI.
Then for any Λ1,Λ2 ∈ [γ, 1],∣∣∣∣W (Λ1)−W (Λ2)

∣∣∣∣ ≤ ||(Λ1I + cc′ + µ′Ω0µ)
−1 − (Λ2I + cc′ + µ′Ω0µ)

−1||∞ · ||µ′Ω0µ0 + c0c||1
= ||V (DΛ1)−1 − (DΛ1)−1)V ′||∞ · ||µ′Ωµ0 + c0c||1
(i)
= ||(DΛ1)−1 − (DΛ1)−1||∞ · ||µ′Ω0µ0 + c0c||1

= ||µ′Ω0µ0 + c0c||1 max
i=1,...,J

|Λ1 − Λ2|
(di + Λ1)(di + Λ2)

≤ ||µ′Ω0µ0 + c0c||1
γ2

|Λ1 − Λ2|

where (i) follows from V being orthogonal. Condition (5) of Lemma C.1 is shown. For any
Λ1,Λ2 ∈ [γ, 1], we can diagonalize 1

r

∑r
s=1 y

s(ys)′ = VTDTV
′
T and define DΛ

T := DT + ΛI, so that

∣∣∣∣∣∣W̃SC(Λ1)− W̃SC(Λ2)
∣∣∣∣∣∣ ≤ ||1

r

r∑
s=1

ys0 · ys||1 · max
i=1,...,J

|Λ1 − Λ2|
(di,T + Λ1)(di,T + Λ2)

≤
||1r
∑r

s=1 y
s
0 · ys||1

γ2
· |Λ1 − Λ2| =: BT0 · |Λ1 − Λ2|

19



where

γ2 · E(BT0) ≤
1

r

J∑
j=1

r∑
s=1

E(|y0| · |ysj |)

≤ 1

r

1

∆2

J∑
j=1

r∑
s=1

E

(
∆∑
ℓ=1

(|c0|+ |δs,ℓ|+ |λ′
s,ℓµ0|+ |ε0,s∆+ℓ|)

)
·

(
∆∑
ℓ=1

(|cj |+ |δs,ℓ|+ |λ′
s,ℓµj |+ |εj,s∆+ℓ|)

)

≤ 1

r

J∑
j=1

r∑
s=1

(1 + |c0|+ |cj |+ ||µ0||+ ||µj ||)σ2 = J(1 + |c0|+ |cj |+ ||µ0||+ ||µj ||)σ2 = O(1)

where the last inequality follows from the bounded second moments of δt, λt and εjt by assumption.
By Markov-inequality, condition (4) of Lemma C.1 is satisfied, so that we obtain (C.4).

Step 4: We show that W (Λ) → W ∗ as 0 < Λ ↓ 0

For any Λ > 0, A(W,Λ) is a strictly convex and continuous function, soW (Λ) := argminA(W,Λ)
is unique. Define W ∗ as the minimum-norm least square solution that minimizes H(W ) :=
(c0 − c′W )2 + (µ0 − µW )′Ω0(µ0 − µW ) over W ∈ ∆J

η , i.e. H(W ∗) = 0 such that for any other

W ∈ ∆J
η with H(W ) = 0, ||W ∗|| < ||W ||; this uniqueness follows from Lemma A.1. Note that

H(W ∗) = 0 by assumption 4.

For any W † ∈ ∆J
η with ||W †|| > ||W ∗||, we will have A(W ∗,Λ) < A(W †,Λ). Therefore we have

thatW ̸= W ∗, if ||W (Λ)|| ≤ ||W ∗||. Furthermore, we know that any ||W || ≤ ||W ∗|| has the property
that H(W ) > 0, since W ∗ is the minimum-norm solution. Define ∆(W ) := W −W ∗ and consider
any fixed δ > 0. Consider the open ball around W ∗, defined as Bδ(W

∗) ≡ {W : ||∆(W )|| < δ}.
Since ∆̃ := {W : ||W || ≤ ||W ∗||} is compact, then ∆̃∩Bc

δ(W
∗) is compact. By Weierstrass extreme-

value-theorem, there exists a W ‡ ∈ ∆̃ ∩ Bc
δ(W

∗) with 0 < H(W ‡) ≡ inf
W∈∆̃∩Bc

δ(W
∗)H(W ). There

must be a c(δ) > 0 such whenever 0 < Λ < c(δ), then Λη < H(W ‡). Then we can see that

W
Λ ∈ ∆̃ ∩Bδ(W

∗), (C.6)

because of

A(W ∗,Λ) = Λ||W ∗||2 ≤ Λη < H(W ‡) ≤ A(W,Λ)

for any W ∈ ∆̃ ∩ Bc
δ(W

∗), and the fact that any W ∈ ∆J
η\{∆̃} cannot minimize A(W,Λ), i.e.

W ̸= W (Λ). We can expect that c(δ) ↓ 0 since inf
W∈∆̃∩Bc

δ(W
∗)H(W ) is non-decreasing with δ ↓ 0.

This implies that as 0 < Λ ↓ 0, W (Λ) → W ∗.

D proof of corollary 3.2

For any given ξ > 0, we show that there exists a Λ(ξ) > 0 such that for any fixed 0 < Λ ≤ Λ(ξ),

|W̃SC(Λ)−W ∗| ≤ ξ + op(1)
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By Theorem 2, there exists a Λ(ξ) > 0 such that for any 0 < Λ ≤ Λ(ξ), we have |W (Λ)−W ∗| ≤ ξ.
Define γ := Λ. Then by triangle inequality,

|W̃SC(Λ)−W ∗| ≤ |W̃SC(Λ)−W (Λ)|+ |W (Λ)−W ∗| ≤ op(1) + ξ

so that the result is shown.

E Proof of corollary 3.3

Consider any positive decreasing sequence (ξm)∞m=1 that converges to 0. By Theorem 2, for ξ1,
there is some m0(ξ1) ∈ N and Λ(ξ1) > 0 such that for any T ≥ m0(ξ1),

|W̃SC
T (Λ(ξ1))−W ∗| ≤ |W̃SC

T (Λ(ξ1))−W (Λ(ξ1))|+ |W (Λ(ξ1))−W ∗| ≤ ξ1 + ξ1 = 2ξ1

Moving to ξ2, there exists m0(ξ2) > m0(ξ1) and Λ(ξ2) > 0 such that for any T ≥ m0(ξ2),

|W̃SC
T (Λ(ξ1))−W ∗| ≤ 2ξ2

We can express this recursively, and by taking ΛT ≡ Λ(ξ1) for T = 1, ...,m0(ξ2), ΛT ≡ Λ(ξ2) for
T = m0(ξ2) + 1, ...,m0(ξ3), so on and so forth. Then we see that the result holds.

F Proof of Theorem 3

The proof follows from an application of Chernozhukov et al. (2021)[Lemma H.1-H.5]. We include
the proof for completeness. The first three lemmas are given to make the exposition self-contained.
We write n ≡ T ! under moving permutation.

Lemma F.1 (Lemma H.5 Chernozhukov et al. (2021)). Consider moving block permutations Π
with T1 fixed. Suppose that for some Q > 0, |S(u) − S(v)| ≤ Q||DT1(u − v)|| for any u, v ∈ RT

and DT1 := Blockdiag(0T0 , IT1). If ||P̂N (Λ)− PN ||/
√
T ≤ δT and |P̂N

t − PN
t | ≤ δT for t ∈ T0 with

probability at least 1− γT , γT = o(1), then with probability at least 1− γT ,

(1)
1

n

∑
π∈Π

[S(ûπ(Λ))− S(uπ)] ≤ δ2T

(2) |S(û(Λ))− S(u))| ≤ δT

Define F̃ (x) := 1
n

∑
π∈Π 1{S(uπ < x)} and F (x) := P(S(u) < x).

Lemma F.2 (Lemma H.2 Chernozhukov et al. (2021)). Let Π be moving block permutations.
Suppose that {ut}Tt=1 is a stationary and strong mixing. Assume the following conditions: (1)∑∞

k=1 αmixing(k) < M for some M , (2) T0 ≥ T1 + 2, and (3) S(u) has bounded pdf. Then there
exists a M ′ > 0 depending only on M such that for any δ1T > 0,

P(sup
x∈R

|F̃ (x)− F (x)| ≤ δ1T ) ≥ 1− (M ′
√

T1

T0
logT0 +

T1 + 1

T0 + T1
)/δ1T
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Lemma F.3 (Lemma H.1 Chernozhukov et al. (2021)). Suppose that with probability at least 1−γ1T
we have

sup
x∈R

|F̃ (x)− F (x)| ≤ δ1T

and with probability at least 1− γT

(1)
1

n

∑
π∈Π

|S(ûπ(Λ))− S(uπ)| ≤ δ2T ,

(2) |S(û(Λ))− S(u)| ≤ δT

(3) The pdf of S(u) is bounded above by D

Then for any θ ∈ (0, 1),

|P(p̂(Λ) ≤ θ)− θ| ≤ 4δ1T + 4δT + 2D(δT + 2
√

δT ) + γ1T + γT

We are now ready to prove Theorem 3. Observe that

P̂N
t (Λ)− PN

t = −(yI0t − y′tW̃
SC
T (Λ)− α0t)−W ∗′yNt + yN0t

= −(yN0t − y′tW̃
SC
T (Λ))−W ∗′yNt + yN0t

= (W̃SC
T (Λ)−W ∗)′yNt

= (W̃SC
T (Λ)−W ∗)′c+ (W̃SC

T (Λ)−W ∗)′µλt + (ŴSC
T (Λ)−W ∗)′εt

Therefore, by noting the simple inequality of (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2,

||P̂N (Λ)− PN ||22/T =
1

T

T∑
t=1

(P̂N
t (λ)− PN

t )2

≤ 4
{
(W̃SC

T (Λ)−W ∗)′c
}2

+ 4||(W̃SC
T (λ)−W ∗)′µ||2

{
1

T

T∑
t=1

||λt||2
}

+ 4||(W̃SC
T (Λ)−W ∗)µ||2

{
1

T

T∑
t=1

||εt||2
}

≤ 4||c||2 · ||W (Λ)−W ∗||2 + 8||µ||2||W (Λ)−W ∗||2σ2 + op(1)

= 4(||c||2 + 2||µ||2σ2)||W (Λ)−W ∗||2

since E||λt||2,E||εt||2 < σ2 < ∞ by assumption, Markov inequality, and W̃SC
T (Λ)

p→ W (Λ) by
Theorem 2. Define C1 := 2

√
(||c||2 + 2||µ||2σ2) and C2 := ||c|| + σ2||µ|| + σ2 so that for some

sequence of γT = o(1), for probability at least 1− γT , we have

||P̂N (Λ)− PN ||2/
√
T ≤ C1||W (Λ)−W ∗||
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and

|P̂N
t (Λ)− PN

t | ≤ C2||W (Λ)−W ∗||

Then define

δT := max(C1, C2)||W (Λ)−W ∗|| (F.1)

Next, by setting δ1T = (T1
T0
)1/4 and applying Lemma F.3 for (F.1), we obtain

|P(p̂(Λ) ≤ θ)− θ| ≤ 4δ1T + 4δT + 2D(δT + 2
√

δT ) + γ1T + γT

≤ 4(T1/T0)
1/4 + 4δT + 2D(δT + 2

√
δT ) + (M ′

√
T1

T0
logT0 +

T1 + 1

T0 + T1
)/(T1/T0)

−1/4 + γT

≤ C
{
(T1/T0)

1/4logT0 + δT +
√

δT+
}
+ γT

G Regularity conditions for consistent estimator

Assumption 5. For each Λ ∈ Θ, where Θ is compact, W̃SC
T (Λ)−W (Λ) = op(1)

Assumption 6. Suppose there is a BT = Op(1) such that for all Λ, Λ̃ ∈ Θ, we have |W̃SC
T (Λ) −

W̃SC
T (Λ̃)| ≤ BTh(d(Λ, Λ̃)), where h(0) = 0 and h is continuous at 0

Lemma G.1. Suppose assumptions 5 and 6 holds. Then

sup
Λ∈Θ

∣∣∣W̃SC
T (Λ)−W (Λ)

∣∣∣ = op(1)

Proof of Lemma G.1
First we show that for every Λ† ∈ Θ, there exists some δ > 0 such that

sup
Λ∈Bδ(Λ†)

∣∣∣W̃SC
T (Λ)− W̃SC

T (Λ†)
∣∣∣ ≤ GT (ε, γ) (G.1)

where P(|GT (ε, γ)| > ε) < γ for T ≥ T (ε, γ). Since BT = OP (1), there exists an M such that for
every T , P(BT > εM) < γ. Define GT (ε, γ) := BT /M . Choose δ small enough so that h(ℓ) < 1/M
for any ℓ < δ. Then

sup
Λ∈Bδ(Λ†)

∣∣∣W̃SC
T (Λ)− W̃SC

T (Λ†)
∣∣∣ ≤ BT sup

Λ∈Bδ(Λ†)

h(d(Λ,Λ†)) ≤ BT /M = GT (ε, γ)

so that (G.1) is shown. Next we show the result. Define RT (Λ) := W̃SC
T (Λ) −W (Λ). Then there

are finite balls Bδ(Λi) for some i = 1, ..,m such that Θ ⊂ ∪m
i=1Bδ(Λi) and Λi ∈ Θ, so

sup
Λ∈Θ

|RT (Λ)| ≤ max
i=1,...,m

|RT (Λi)|+ max
i=1,...m

sup
Λ∈Bδ(Λi)

|RT (Λ)−RT (Λi)| = op(1) +GT (ε, γ)
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where the equality follows from assumption 5. Therefore

P(sup
Λ∈Θ

> ε) ≤ P(op(1) > ε/2) + P(GT (ε, γ) > ε/2) < η

for large enough n, which follows from (G.1).

If assumption 6 holds, specifically that BT = Op(1) over Λ ∈ (0, 1], then we have a more general
result than (C.4), which allows us to show that for any sequence of 0 < ΛT ↓ 0,

|W̃SC(ΛT )−W ∗| = op(1).

The implication is that we can then construct a feasible statistic W̃SC(ΛT ) that is asymptotically
recovers the treated individual’s fixed effect c0 and factor loading µ0. However, as Λ converges to
0, (ΛI + cc′ + µ′Ω0µ)

−1 will blow up if cc′ + µ′Ω0µ is positive semi-definite. This means that for
any Λ1,Λ2 ∈ (0, 1],

max
i=1,...,J

|Λ1 − Λ2|
(di + Λ1)(di + Λ2)

=
1

Λ1Λ2
|Λ1 − Λ2|,

implying that the equi-continuity of W (Λ)Λ∈(0,1] cannot hold, and this violates condition (5) of
Lemma C.1. However, we can modify assumption 6 and obtain some analogous result to Lemma
G.1. We need to assume some ”smoothness” on the rate of convergence of RT (Λ).
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